

Statement of Work

User Controlled Lightpaths Project

Prepared for: CANARIE Inc. and CISCO Canada Inc.

Date: May 6, 2003

Submitted by:
Prof. Raouf Boutaba (rboutaba@bbcr.uwaterloo.ca)

School of Computer Science

University of Waterloo
200 University Avenue West

Waterloo, ON N2L 3G1
Canada

1

1 Cover Sheet... 3
2 Project Summary... 4
3 Project Overview .. 4
4 Participants and Their Contributions.. 5

4.1 Organisations Involved... 5
4.2 Participants.. 6

4.2.1 Raouf Boutaba.. 6
4.2.2 Mohamed Dadi ... 6
4.2.3 Acila Derbal .. 7
4.2.4 Youssef Iraqi ... 7
4.2.5 Boris Jabes.. 8
4.2.6 Adel Ghlamallah... 8
4.2.7 Wojciech (`voi-tek) Golab.. 9
4.2.8 Basem Shihada.. 9
4.2.9 Iban Touchet ... 10

4.3 Summary of Human Resources.. 11
5 Technology Architecture and Implementation Plan... 11

5.1 Software Architecture... 11
5.2 Policy Components and Support for Extensions.. 11
5.3 Integration with Grid Architecture Standards... 12
5.4 Support for Heterogeneous Network Equipment.. 12
5.5 Future Upgrades and Extensions.. 12
5.6 Technical Support and Maintenance... 13

6 Detailed Project Plan .. 13
6.1 Assumptions and Constraints.. 13
6.2 Project Deliverables.. 14
6.3 Project Organization ... 15

6.3.1 Organizational Structure... 15
6.3.2 Interaction with CANARIE .. 15
6.3.3 Roles and Responsibilities.. 16
6.3.4 Team Management ... 17

6.4 Development Process.. 17
6.4.1 Phase Plan... 18
6.4.2 Iterations and Use Cases... 19
6.4.3 Demonstrations... 20

6.5 Project Schedule ... 20
7 Project Budget... 24
8 Intellectual Property.. 24
9 Web Site Information.. 25
10 Appendix: Resumes of Key Project Personnel ... 26
11 Appendix: Software Architecture... 27

11.1 Introduction... 27
11.2 Terminologies and Definitions... 27
11.3 Key Concepts.. 28

11.3.1 Abstraction of LPs.. 28

2

11.3.2 LPO Ownership .. 29
11.3.3 LPO Spawning.. 30
11.3.4 End-to-end LPO establishment... 33
11.3.5 LPO Termination.. 34
11.3.6 LPO Status.. 34

11.4 Data Structures.. 35
11.5 Detailed System Architecture... 38

11.5.1 User Access Layer: Web Server ... 39
11.5.2 Service Provisioning Layer: Service Registry .. 40
11.5.3 Service Provisioning Layer: Application server ... 40
11.5.4 Resource Management Layer: Resource Agent.. 44
11.5.5 Resource Management Layer: LPO Space... 46

11.6 Fault Recovery.. 46
11.7 Sample Scenarios.. 47

11.7.1 LP Advertisement by a Domain Administrator .. 47
11.7.2 Setup end-to-end LP for a Grid Application... 48
11.7.3 Setup end-to-end LP by a customer through the Web interface....................... 50

11.8 References... 53
12 Appendix: Draft XML Schema and WSDL Descriptors.. 54

12.1 Introduction... 54
12.2 Sample XML Schema... 55
12.3 Sample DTD ... 56
12.4 Sample WSDL Documents... 56

3

1 Cover Sheet

Customer Controlled Lighpaths Project

 Prepared for: CANARIE Inc. and CISCO Canada Inc.

 Submitted by: Prof. Raouf Boutaba
 (rboutaba@bbcr.uwaterloo.ca)

 School of Computer Science
 University of Waterloo
 200 University Avenue West
 Waterloo, ON N2L 3G1
 Canada

 Other Participants: Mohamed Dadi
 Acila Derbal
 Youssef Iraqi
 Adel Ghlamallah
 Wojciech Golab
 Boris Jabes
 Basem Shihada
 Iban Touchet

 Start date: 02/06/03
 End date: 10/30/04

4

2 Project Summary
The objective of the project is to provide a software system that enables user control of
lightpaths through interaction with CA*net 4 lightpath cross-connect devices. The system
allows users to create end-to-end lightpaths across multiple management domains as well as to
partition a single lightpath into sub-lightpaths that can be advertised and leased to other users.
The system offers a Web-based interface for interaction with users as well as a Grid services
interface for interaction with Grid applications.

3 Project Overview
The objective of the project is to provide a software system that enables user control of
lightpaths through interaction with CA*net 4 lightpath cross-connect devices. The original
proposal responds to a call for proposals by CANARIE Inc. and Cisco Canada Inc., under a
shared-cost, CA*net 4 Directed Research Program.

The software allows users to create end-to-end lightpaths across multiple management
domains as well as to partition a single lightpath into sub-lightpaths that can be advertised and
leased to other users. Domain administrators and customers interact with the system using a
Web-based interface. Domain administrators are able to advertise existing lightpaths within a
management domain. Customers are able to lease advertised lightpaths and re-advertise
portions of such for lease. Functionality related to lightpath manipulation, including
advertisement, concatenation, partitioning, and termination, is implemented in the form of
Grid services. These comprise a separate layer that can be directly accessed by Grid
applications. Actual changes to lightpath-related data objects and to the configuration of
CA*net 4 network hardware devices are effected via a set of resource agents. Resource agents
provide a virtualization of hardware resources, allowing customers to exercise control over the
subset of resources dedicated to their own lightpaths. The collection of resource agents
maintains lightpath-related data in a distributed object space.

The project contributes to the goals of CA*net 4 by realizing the concept of a “customer-
empowered network.” Our software places dynamic allocation of network resources in the
hands of users by allowing users to concatenate and partition lightpaths. By providing a
standard Grid interface, our software also facilitates the deployment of high bandwidth Grid
applications between research institutions across Canada. Thus, the project promotes the
widespread adoption of a next-generation user-controlled optical Internet and reinforces
Canada’s leadership role in this endeavour, satisfying the overall purpose of the CA*net 4
Directed Research Program.

The project further contributes to specific program objectives as follows. As described earlier,
our software allows users to control a subset of resources on CA*net 4 cross-connect devices.
Moreover our user access layer provides a means to offer this service to a set of authorized
users only. By allowing users to advertise portions of lightpaths for lease, our software makes
it possible to delegate control of the corresponding subset of hardware resources to other

5

authorized users. The software provides a Web-based human interface as well as a Grid
services interface compliant with the OGSA standard that allows Grid applications such as
GridFTP to directly query lightpath availability and create bandwidth-guaranteed paths across
the network. Standards-based technologies such as JavaSpaces and ebXML are used to store
lightpath-related data and to advertise services for querying these data to Grid applications.
Industry standard protocols such as TL1 are used by resource agents to interact with network
hardware devices.

The result of the project, namely the software system, will be evaluated against two objectives:
correctness with respect to the specification and satisfaction of program goals. Evaluation
against the first objective will be performed by the project team members, following the
testing plan outlined in the Detail Project Plan section. Evaluation against the second
objective will be performed by CANARIE during the process of reviewing progress reports
and deliverables. In addition, CANARIE staff providing the design team with technical
expertise will be in a position to evaluate the team members’ growing understanding of the
CA*net 4 environment and comment on the degree to which the team’s vision coincides with
program goals on a technical level.

4 Participants and Their Contributions

4.1 Organisations Involved
This project will be realized by the University of Waterloo, which is renowned for its
innovation and commitment to advancing knowledge. For the 11th year in a row, Maclean’s
national reputation survey has recognized Waterloo as the best overall and most innovative
among 47 universities across Canada1.

Waterloo is known worldwide for its commitment to both curiosity-driven and applied
research, promoting not only the discovery of new knowledge but also the application of that
knowledge in novel ways. The faculty, staff, and students of the university attracted more
than $115.5 million in research funding from public and private sources in 2001-02. This
amount represents a 38 percent increase from $84 million in 2000–01.

Waterloo is also a leader in partnering with the private sector. Currently, eleven of the
university’s NSERC Research Chairs are industry-sponsored. This relationship promotes the
dissemination of new knowledge and technological advances for the benefit of society. At the
same time, the university assists researchers in commercializing the results of their work
through its Technology Transfer and Licensing Office. Many high-tech and knowledge-based
companies trace their roots to the University of Waterloo, including Waterloo Maple, Open
Text, Dalsa, Certicom, Intelligent Mechatronic Systems, Sirific Wireless, Ignis Innovation,
and Research in Motion.

1 http://www.adm.uwaterloo.ca/infoipa/macleans.html

6

The University of Waterloo project team will rely on CANARIE staff to provide technical
advice concerning the CA*net 4 environment, network hardware in particular, and to share
their vision of customer empowered networks.

4.2 Participants

4.2.1 Raouf Boutaba

Position: Head of the Network Management Group, University of Waterloo.
Associate Professor in the School of Computer Science, University of Waterloo

Email address: rboutaba@bbcr.uwaterloo.ca

Role in the project: Project Leader

Responsibilities:

• organize human resources and assign roles
• oversee all project activities
• monitor project progress
• delegate management duties to Chief Research Assistant

Relevant qualifications:

• leadership and management skills demonstrated during extensive research experience

Relevant experience:
• led the development of the Virtual Network Resource Management System for

customer management of networks
• led numerous research and development projects both in the industry and academia
• ten years of experience as Associate/Assistant Professor at a university
• five years of experience as a research scientist in the industry

4.2.2 Mohamed Dadi

Position: Software Designer and Developer

Email address: mddadi@yahoo.com

Role in the project: Database Administrator

Responsibilities:

• install and fine-tune database
• create database schema

Relevant qualifications:

• relational database modeling

7

• database installation and tuning in context of web based applications
• SQL specialist
• ORACLE, MySQL, SQL Server
• Oracle 9ias, Weblogic

Relevant experience:

• 7 years experience in database field as consultant for various clients,
including National Defense, Sureté du Québec

4.2.3 Acila Derbal

Position: Freelance Graphic Designer

Email address: aciloo@yahoo.com

Role in the project: Web Interface Designer

Responsibilities:

• design and develop Web pages in user access layer

Relevant qualifications:

• thorough knowledge of Adobe Photoshop, Adobe Illustrator and Macromedia
Fireworks for Photo editing and interface design

• Macromedia Flash for Web Animation
• site building with Macromedia Dreamweaver
• HTML, CSS

Relevant experience:

• worked as part of a designing team for ERFA Canada producing an online catalogue;
tools used: Dreamweaver, Photoshop, HTML and CSS

• designing online ads for various clients of wedodesign.net;
tools used: Flash and Fireworks

• college work experience as a Dreamweaver instructor's assistant

4.2.4 Youssef Iraqi

Position: Postdoctoral Fellow, University of Waterloo. Ph.D. University of Montreal.

Email address: iraqi@bbcr.uwaterloo.ca

Role in the project: Chief Research Assistant

Responsibilities:

• organize team meetings
• administer project Web site
• assist Project Leader in management duties

8

Relevant qualifications:

• Java, C++, C, Pascal, Assemblers 6800, 6809, 68000, DBaseIV, Informix 4GL, SQL,
Fortran, Prolog, Lisp, HTML, SDL, SDT, LOTOS, Matlab and various other software
packages

Relevant experience:

• participated in the development of a management architecture for self-configurable
networks

• investigated the use of the active networks paradigm in the Internet
• investigated the use of intelligent agents for network management
• developed a dynamic bandwidth allocation algorithm for wireless networks
• Student Member of the Institute of Electrical and Electronics Engineers (IEEE)
• Vice-Chair of the IEEE Kitchener-Waterloo Communications, Information Theory and

Vehicular Technology joint chapter since 2001
• Chief Teaching Assistant, Winter 2002, University Waterloo
• Chief Teaching Assistant, Fall 2001, University Waterloo
• Chief Teaching Assistant, 1995-1999, University Montreal

4.2.5 Boris Jabes

Email address: bsjabes@uwaterloo.ca

Role in the project: Co-op Student

Responsibilities:

• assist in programming, testing, and documentation of all three layers of the software
system

4.2.6 Adel Ghlamallah

Position: Consultant and Senior Programmer/Analyst – Nomade Technologies

Email address: oka_adel@yahoo.com

Role in the project: Architect

Responsibilities:

• responsible for overall system architecture
• design and develop different software layers
• coordinate the work of Research Assistants and Co-op Students
• configuration control

Relevant qualifications:

• experience in architecture and design of web-based and distributed systems
• Web-related technologies: JSP/Servlet, JavaScript, HTTP, HTML...

9

• Apache and Iplanet Web servers, Tomcat and Jrun Web-Containers, as well as
WebLogic and Jboss Server-Applications.

• EJB, JMS, JNDI and Web-Services
• UP and XP methodologies
• Java, C and Perl

Relevant experience:

• architecture of Web-based complex systems (including network services system, and
phone call management system)

• lead two technical teams of 4 to 6 developers at BCE-Emergis and OKA-Info
• more than 5 years of design and development of object-oriented distributed systems

4.2.7 Wojciech (`voi-tek) Golab

Position: Master of Math Candidate, School of Computer Science, University of Waterloo

Email address: wgolab@uwaterloo.ca

Role in the project: Research Assistant

Responsibilities:

• responsible for resource management layer

• design resource allocation algorithms

Relevant qualifications:

• Java, C, C++, JavaScript
• HTML forms, HTTP, CGI, Java servlets, JSP
• Apache Tomcat, Apache HTTP Server
• X.509 certificates, OpenSSL
• multithreaded client/server socket programming in Java and Microsoft Visual C++
• Matlab, Maple
• algorithmic aspects of optical network provisioning

Relevant experience:

• full-time summer and subsequent part-time work in Java servlet development at the
University of Toronto at Scarborough, Department of Statistics

• full-time summer co-op positions in Web development at CIBC Mortgages Inc. and
cryptographic software development at JAWZ Inc.

• full-time summer position in database development at the University of Toronto at
Scarborough, Computer Science Co-op Department

4.2.8 Basem Shihada

Position: Ph. D. Candidate, School of Computer Science, University of Waterloo

10

Email address: bshihada@bbcr.uwaterloo.ca

Role in the project: Research Assistant

Responsibilities:

• responsible for user access layer and service provisioning layer
• interconnect different technologies
• design and develop Grid interfaces and applications

Relevant qualifications:

• EJB, WSDL, XML, Java servlets, SOAP, SOAP/HTTP, ebXML, Open Grid Service
Architecture (OGSA)

• Novell networks (installation and configuration), Windows NT and Linux based nodes
• Virtual Private Networks (IPSec) and Active networks
• Network programming with TCP/IP, UDP sockets, and multithreaded task operations
• ISDN, PPP, X.25, ATM
• BGP, IGRP, RIP, OSPF, SNMP
• C/C++, JAVA, PASCAL, PLAN, Visual BASIC, Assembly, PROLOG and HTML

Relevant experience:

• Parallel Computing: implemented Parallel Sorting with Regular Sampling (Shi &
Schaeffer), with Message Passing Interface on LAM using a maximum of 4 processes
under one sequential processor

• Process Object Oriented Design: designed and implemented a simulation of computer
networks performing an e-mail application using multithreaded task computing

• Methodology of Software Evaluation: surveyed and provided a critical software
evaluation to four programming development environments: Borland C++ 5.5 vs.
Microsoft Visual C++ 6.0 and JAVA Workshop 2.0 vs. Visual Cafe

4.2.9 Iban Touchet

Position: Exchange Student, University of Waterloo

Email address: itouchet@engmail.uwaterloo.ca

Role in the project: Co-op Student

Responsibilities:

• interface with network hardware, Cisco ONS 15454 in particular
• provide an API for lightpath configuration

Relevant qualifications:

• C, JAVA
• LAN Technology (switching, STP, trunking), TCP/IP, routing protocols
• Cisco IOS, Cisco CLI

11

Relevant experience:
• RouterSim / Boson CISCO network simulator
• simulator of the 68000 CPU written in C
• complete kernel of a multi-tasking operating system (PIII architecture) written in C

4.3 Summary of Human Resources
The success of the project depends on the contributions of each member of the team. Raouf
Boutaba is an experienced team leader. He was the Director of the Telecommunications and
Distributed Systems Division in the Computer Science Research Institute of Montreal from
1995 to late 1997, and is currently the head of the Network Management Group at the
University of Waterloo. Youssef Iraqi has demonstrated leadership ability and organization
skills while holding the position of Chief Teaching Assistant from 1995 to present. Adel
Ghlamallah has extensive experience in Java programming and the software development
process. The remaining team members have diverse but complementary profiles: Mohamed
Dadi is an industry professional knowledgeable in database design, Acila Derbal is an
experienced graphics designer, Wojciech Golab has experience with interactive Web
technologies and has studied optical network provisioning algorithms, Basem Shihada is
familiar with Java and Grid technologies, and Iban Touchet is studying Cisco product
configuration. Together, members of the project team are able to provide the leadership,
organization, and technical competence necessary to carry the project through to completion.

5 Technology Architecture and Implementation Plan

5.1 Software Architecture
Please refer to Appendix: Software Architecture and Appendix: Draft XML Schema and
WSDL Descriptors.

5.2 Policy Components and Support for Extensions
Policy decisions are made throughout the system in order to control access to lightpath
resources. In user-to-system interactions, policy decisions are made on the basis of the user
ID. For example, only a domain administrator is permitted to create root-LPOs, and only the
owner of an LPO is allowed to advertise it for lease. Users can also police the use of their
own lightpaths by means of the programmable controller module of a resource agent. For
example, a customer may wish to operate customized routing within the virtual network
consisting of his own lightpaths. This can be achieved by uploading appropriate scripts to the
resource agents corresponding to the relevant CA*net 4 lightpath cross-connect devices.

Depending on the CANARIE requirements, policy components can be implemented in various
ways. In the proposed implementation, policy components are realized in the form of Java
classes in the user access layer and scripts in the resource management layer. A moderate
level of extensibility can be achieved by allowing the scripts to be upgraded dynamically using

12

the Web-based interface. As an extension to the proposed software system, a more
sophisticated policy-based-management framework can be realized by implementing the
standardized COPS protocol along with the COPS-PR client. For example, the Meta-Policy
Information Base Platform, an open source Java package, can be incorporated. This package
enables flexible specification and efficient distribution of policies using the meta-policy
concept2.

5.3 Integration with Grid Architecture Standards
The proposed software system integrates with Grid standards by implementing the
OGSA/OGSI Grid services framework within the service provisioning layer. This allows Grid
applications to interface with the system directly to query lightpath availability and create
lightpaths for large data transfers.

Note that because Grid technologies have not yet matured, integration of our system with Grid
standards is dependent on the availability of a stable OGSA framework.

5.4 Support for Heterogeneous Network Equipment
The resource management layer provides an abstraction of network hardware to the upper
layers. The switch interface component of the resource agent serves as the link between our
software and CA*net 4 hardware devices. At one end, the switch interface exposes a
hardware-independent API to the other components of the resource agent. At the other end, it
communicates with hardware devices through a protocol layer that implements industry
standard protocols such as TL1 and SNMP. The need for compatibility with heterogeneous
network equipment also calls for a middle layer consisting of a set of hardware adapter
modules that translate API calls into appropriate protocol messages. This middle layer
resolves functional differences between devices of different types (e.g. optical cross-connect
vs. SONET switch) as well as vendor-related differences between devices of like types.

Loss of hardware compatibility resulting from changes to CA*net 4 network hardware can be
remedied through a combination of adding hardware adapter modules in the middle layer of
the switch interface and incorporating additional protocol implementation packages in the
protocol layer.

5.5 Future Upgrades and Extensions
Any errors in the code or documentation written by the project team that emerge during the
maintenance phase will be corrected. Updates will be made available through the project Web
site. This process will occur on an ad-hoc basis throughout the maintenance phase.

Major upgrades and extensions may be undertaken under a separate project agreement with
CANARIE. The remainder of this section outlines possible directions for such work.

2 A. Polyrakis and R. Boutaba. The Meta-Policy Information Base. IEEE Network, 16(2):40-48, March/April
2002.

13

The system makes extensive use of open source software packages. Some of these, OGSA,
for example, are early releases subject to significant changes in the near future. As newer,
more stable releases of these components appear, and the corresponding technologies mature,
upgrades to the system may be desired to improve reliability and facilitating gradual evolution.

Software upgrades may also be necessitated by evolution of CA*net 4 network hardware. As
discussed under Support for Heterogeneous Network Equipment, the switch interface
component of the resource agent module may need to be updated if compatibility problems
arise with new hardware devices.

Extensions to the system are possible along several directions. As discussed under Policy
Components and Support for Extensions, the standardized COPS and COPS-PR protocols can
be implemented for flexible policy-based management. In order to achieve greater flexibility
and scalability, the user access layer and service provisioning layer can also be decentralized.
For example, each management domain can execute its own instance of these layers. This
entails significant increase in development effort due to the need to resolve resource
contention issues during simultaneous creation of overlapping end-to-end lightpaths, and the
need to manage trust relationships between domains. Another possible extension involves
adding functionality in the service provisioning layer to enable the creation of survivable
lightpaths. For example, path protection can be incorporated as an option during the process
of end-to-end lightpath creation, and restoration mechanisms can be applied to unprotected
lightpaths.

5.6 Technical Support and Maintenance
One Research Assistant will be assigned on a part-time basis to the task of providing technical
support and software maintenance for a period of one year after the completed software
system is submitted to CANARIE. This individual will be specified in the software
documentation and will be reachable through a University of Waterloo email address.

As discussed under Future Upgrades and Extensions, maintenance duties will be limited to
correcting code and documentation written by the project team.

6 Detailed Project Plan
This section defines the dates, milestones, and deliverables that will drive the project based on
the phases and iterations required to build the proposed software system.

6.1 Assumptions and Constraints
A working release of the software is intended to be available by the end of October. The plans
and the milestones presented in this document are based on the following assumptions:

• access to a test environment with the necessary equipment (switches) and the
underlying optical network during all the development phases

14

• availability of Cisco switches and CANARIE network experts
• availability of stable open source components related to Grid interfaces, OGSA

framework in particular

The principal risks are related to Grid technologies and the capability of network hardware to
support external (software) configuration. Grid technologies and the related OGSA
framework are still in the early stages of evolution and it is difficult to predict whether current
software releases will prove sufficiently stable. An alternative would be to use other interface
technologies instead (e.g. Web Services, RMI, or CORBA). The other issue concerns the
configuration of network hardware through external software. It is not clear how this will be
implemented in the system and supported by hardware devices.

6.2 Project Deliverables
The following deliverables will be produced during the project:

• Vision: a high-level description of the system, produced during the Inception phase. It
defines the project scope and contains the critical features the software must provide to
the customer.

• Project Plan: an action plan for developing the required system, produced during the
Inception phase and refined in subsequent phases. It includes schedules, project plans,
commitments, and resources. It describes the process for designing, implementing,
documenting, and testing the software system. The estimates and plans in this
document will continually change during the project.

• Use Case Model: describes the proposed functionality of the system based on detailed
use cases. This document is created in the Inception phase and evolves during the
Elaboration and Construction phases.

• Supplementary Specification: captures the system requirements that are not captured in
the use cases of the Use Case Model, for example the performance and reliability of
the system.

• Software Architecture Document: provides a source of technical information
throughout the project. At the end of Elaboration, it may contain detailed descriptions
for the architecturally significant use cases, as well as identify key mechanisms and
design elements.

• Design Model: describes how the software is structured into packages and classes
using different UML diagrams. Produced during Elaboration and Construction phases.

• Iteration Plan: details the use cases, scenarios, and other work items corresponding to
an iteration. This document is produced one iteration in advance.

• Test Plan: provides an overview of the test effort throughout the life of the project.
This document is created during the Elaboration phase and updated during
Construction and Transition phases.

15

• Deployment Plan: describes the set of tasks necessary to install, test, and effectively
transition the product to the target environment. This document will be produced
during Construction phase and refined during the Transition phase.

• Configuration Management Plan: describes configuration and control management
tasks to be performed during the project. This document will be started in Inception
phase and refined during subsequent phases.

• User Manual: will be produced at the end of the project.

• Demonstrations (see Demonstrations section)

6.3 Project Organization

6.3.1 Organizational Structure
The organizational char t of the project team is presented in

Figure 1.

Figure 1: Team Organization.

6.3.2 Interaction with CANARIE

The Project Leader will provide Status Assessment, as scheduled in the plan, to CANARIE.
The project team will also interact with CANARIE staff to obtain technical advice and to
solicit feedback regarding deliverables and other relevant artefacts.

Adel Glamallah
Architect

Youssef Iraqi
Chief Research

Assistant

Basem
Shihada

Research
Assistant

Wojciech
Golab

Research
Assistant

Iban
Touchet

Co-op

Student

Boris
Jabes

Co-op

Student

Acila
Derbal

Web
Interface
Designer

Mohamed
Dadi

Database

Admin.

Raouf Boutaba
Project Leader

16

6.3.3 Roles and Responsibilities

The team members involved in the project, their roles, and their responsibilities are identified
in Table 1.

Name Role Responsibilities

Raouf Boutaba Project Leader � organize human resources and assign roles

� oversee all project activities

� monitor project progress

� delegate management duties to Chief
Research Assistant

Youssef Iraqi Chief Research
Assistant

� organize team meetings

� administer project Web site

� assist Project Leader in management duties

Adel Ghlamallah Architect � responsible for overall system architecture

� design and develop different software layers

� coordinate the work of Research Assistants
and Co-op Students

� configuration control of the project

Basem Shihada Research Assistant 1 � responsible for user access layer and service
provisioning layer

� interconnect different technologies

� design and develop Grid interfaces and
applications

Wojciech Golab Research Assistant 2 � responsible for resource management layer

� design resource allocation algorithms

Canarie staff

Darcy Quesnel

CA*net 4 Expert

Technical liaison

� provide support during various activities

Mohamed Dadi Database
Administrator

� install and fine-tune database

� create database schema

Acila Derbal Web Interface
Designer

� design and develop Web pages in user access
layer

Iban Touchet Co-op Student 1 � implement modules to access and configure
CA*net 4 lightpath cross-connect devices

Boris Jabes Co-op Student 2 � assist in programming, testing, and
documentation of all three layers

17

Table 1: Roles and Responsibilities.

6.3.4 Team Management

Members of the project team will be located in the Kitcehener/Waterloo area (Raouf Boutaba,
Youssef Iraqi, Boris Jabes, Wojciech Golab, Basem Shihada, Iban Touchet), and in Montreal
(Mohamed Dadi, Acila Derbal, Adel Ghlamallah). We propose the following solutions to
address the challenges associated with a distributed team:

• Communication
Team members can use many different forms of communication to bridge the physical
distance, including telephone conferences and e-mail. In addition, meetings will be
held regularly at the University of Waterloo to foster inter-personal relationships.

• Availability

A weekly schedule of the availability of each team member will be prepared and made
easily accessible to the entire team. Design and testing sessions will be scheduled
based on this availability.

• Management

Weekly reports from all the team members will be sent to the Project Leader. Regular
feedback will be given to team members in order to steer the project and promote open
communication.

• Configuration Management

A Web-based CVS will be used as a repository to share documents and to control
remote access to source code.

In addition to periodic meetings of the entire project team, participants at the University of
Waterloo will also meet 1-2 times per week.

Disputes within the project team will be resolved by senior team members. Disputes
regarding software architecture and other technical details will be decided by the Architect,
subject to final approval by the Project Leader. Disputes regarding the assignment of roles
and responsibilities will be settled by the Project Leader. In the event that a participant
withdraws or is withdrawn from the project, duties will be temporarily reassigned to other
team members and a replacement will be sought from a large resource pool consisting of
current University of Waterloo students in the School of Computer Science, past students of
Professor Raouf Boutaba, and other skilled contacts developed by team members during their
academic and professional careers.

6.4 Development Process
The development cycle of the proposed software system will be conducted in phases, where
each phase consists of one or more iterations. This approach, based on the Unified Process
(UP), is highly dynamic and adaptive. It will give us the ability to accommodate changes to
requirements, technologies, and goals.

18

6.4.1 Phase Plan

The proposed phases and relative timeline of the development cycle are shown in Table 2.

Phase Number of I terations I teration length
(weeks)

Inception 1 2
Elaboration 2 5
Construction 3 4
Transition 1 3
Maintenance many 52

Table 2: Development cycle: phases and iterations.

The iterations are described in more detail in under Iterations and Use Cases.

The related phases and major milestones are described in Table 3.

Phase Descr iption Milestone

Inception The Inception Phase will develop the product
requirements and establish the scope for the
system. The major use cases will be developed
as well as a high level Software Development
Plan.

Business Case Review at the
end of the phase, when the
project is well scoped and
funded.

Elaboration The Elaboration Phase will analyze the
requirements and will develop the architectural
system. At the completion of the Elaboration
Phase, most use cases (70%) will have been
completed for analysis and design. The high risk
use cases will be considered first. The
architectural system will test the feasibility and
performance of the architecture that is required.

Architectural Prototype at
the end of the phase. The
prototype will include major
architectural components and
will set a requirements
baseline.

Construction During the Construction Phase, remaining use
cases will be analyzed and designed. The pre-
release version of the software will be
developed and test activities will be completed.

Pre-release Version at the end
of the phase, including full
functionality.

Transition The Transition Phase will prepare the pre-
release version of the software for deployment,
ensuring smooth installation. User training will
occur here.

Release Version at the end
of the phase.

Maintenance The Maintenance Phase will take place after the
release version of the system is deployed. It will
be used to identify and fix remaining defects in
code and documentation..

Maintenance Version(s)
of the system.

Table 3: Project phases and major milestones.

19

6.4.2 Iterations and Use Cases

Each phase in the development cycle consists of iterations in which a subset of the system is
designed, specified, developed, or tested. In general, these iterations

• reduce technical risk
• provide early versions of a partially working system
• allow maximum flexibility in planning features for each release

Each iteration is based on one or more use cases. A use case describes a feature of the system
and is defined as a sequence of actions performed by a system that yields a result of value to
the user. Example use cases are briefly described in Table 4.

Use Case Name UC1 : Logon
Brief Description Authenticate user based on username/password, authorize access.

Use Case Name UC2 : Advertise LPO
Brief Description Advertise the availability of an LP.

Use Case Name UC3 : Terminate LPO
Brief Description Find the specified LPO and terminate it.

Use Case Name UC4 : Search LPO
Brief Description Retrieve and return a list of LPO(s) that match specified attributes.

Use Case Name UC5 : Establish End-to-End LP
Brief Description Find and concatenate appropriate component LPs to establish an

end-to-end LP between specified endpoints.

Use Case Name UC6 : Reconfigure LPO
Brief Description Modify a specified LPO’s attributes. For example, increase or

reduce the reserved bandwidth.

Use Case Name UC7 : Access LPO
Brief Description Allow the owner to gain access to and directly use the specified

LPO.

Table 4: Use Cases.

A detailed plan for each iteration will be produced one iteration in advance (see Project
Schedule section).

The maintenance cycle will be considered a series of repeated iterations, each iteration
involving the following activities:

• evaluate severity of remaining defects and impact of corrections, prioritize defects
• identifies a subset of defects to be addressed in this iteration
• plan specific tests to validate corrections to defects
• make corrections and execute tests, repeat until all tests are passed
• update the design documents if necessary

20

• release updated software and documentation

6.4.3 Demonstrations

The following demonstrations will be provided during the development cycle:
• at the end of the elaboration phase, an Architectural Prototype will be presented with

critical features
• at the end of the construction phase, a Pre-release Version of the software will be

provided with a full set of features
• at the end of the transition phase, a Release Version of the software will be made

available

The planned content of the system to be presented for demonstrations is expected to change as
the project progresses. This may be due to a number of factors. In particular benefit, effort,
and risk will be considered in prioritising product requirements.

6.5 Project Schedule
High-level schedule showing project phases, iterations, and milestones is shown in Table 5
and Table 6.

Milestones Star t Date End Date
All Milestones 02/06/03 10/30/03
Business Case Review
(Inception Phase)

02/06/03 05/13/03

Architectural Prototype Version 1
(Iteration 1 of Elaboration Phase)

05/14/03 06/18/03

Architectural Prototype Version 2
(Iteration 2 of Elaboration Phase)

06/19/03 07/22/03

Pre-release Version 1
(Iteration 1 of Construction Phase)

07/23/03 08/20/03

Pre-release Version 2
(Iteration 2 of Construction Phase)

08/21/03 09/17/03

Pre-release Version 3
(Iteration 3 of Construction Phase)

09/18/03 10/14/03

Release (Beta) Version
(Transition Phase)

10/15/03 10/29/03

(Maintenance Phase) 10/30/03 10/30/04

Table 5: Schedule of M ilestones

Task
ID

Deliverables / Milestones / Task Names Budget3 Effor t / Completion
Date

 Inception Phase 52 d
 Vision 28 d
 Project Scope 2 d

3 Budget amounts are computed using average per diem.

21

 Requirements 20 d
 Define project requirement
 High level use cases
 Non-functional requirements
 Define system constraints
 Define Resources 1 d
 Environment 2 d
 Risk List 3 d
 Configuration Management 12 d
 Iteration plan for next iteration 1 d
 Management 3 d
 Meetings 8 d
 Inception Phase complete 05/13/03

 Elaboration Phase 232 d

 I teration I – Develop Architectural Prototype

Version 1
 121 d

 Configure development environment
(development and test tools)

 11 d

 Install and configure Database 5 d
 Install and configure OGSA 5 d
 Install and configure Tomcat 1 d
 Requirements (Use Case Model) 5 d
 Detail selected use cases 5 d
 Web User Interface 15 d
 User Interface Modeling 5 d
 User Interface Prototype 10 d
 Design Model 19 d
 Design sequence diagrams for selected use cases 3 d
 Design class diagrams for selected use cases 3 d
 Design database 5 d
 Design Grid service interface 4 d
 Design modules to access switches 4 d
 Implementation 44 d
 Implement selected use cases 24 d
 Implement Grid interfaces 8 d
 Create Web interface 5 d
 Update database schema 3 d
 Fix defects 4 d
 Test 8 d
 Plan tests 1 d
 Implement tests 7 d
 Management 4 d
 Iteration plan for next iteration 1 d
 Staff the project 3 d
 Meetings 15 d
 Iteration I complete 06/18/03
 I teration I I – Develop Architectural Prototype 111 d

22

Version 2
 Environment 6 d
 Fine-tune and configure development environment 3 d
 Fine-tune and configure 3 d
 Refine Requirements (Use case Model) 5 d
 Detail use cases 5 d
 Web User Interface 10 d
 Refine user interface prototype 10 d
 Design Model 18 d
 Revisit architectural analysis and design 2 d
 Design sequence diagrams for selected use cases 3 d
 Design class diagrams for selected use cases 3 d
 Design database 4 d
 Design Grid service interface 3 d
 Design modules to access switches 3 d
 Implementation 45 d
 Implement selected use cases 24 d
 Implement Grid interfaces 8 d
 Update database schema 4 d
 Create Web interface 5 d
 Fix defects 4 d
 Test 8 d
 Plan tests 1 d
 Implement tests 7 d
 Management 4 d
 Iteration plan for next iteration 1 d
 Staff the project 3 d
 Meetings 15 d
 Elaboration Phase complete 07/22/03

 Construction Phase 320 d

 I teration I – Develop Pre-Release Version 1 113 d
 Requirements (Use case Model) 5 d
 Refine and detail use cases 5 d
 Web User Interface 5 d
 Build Web pages 5 d
 Design Model 19 d
 Design sequence diagrams for selected use cases 5 d
 Design class diagrams for selected use cases 5 d
 Design database 3 d
 Design Grid Applications (FTP…) 3 d
 Design resource agent 3 d
 Implementation 59 d
 Implement selected use cases 28 d
 Implement resource agent components 10 d
 Update database schema 3 d
 Create Web Interface 5 d
 Implement Grid interfaces 8 d

23

 Fix defects 5 d
 Test (Unit and Functional Tests) 6 d
 Plan tests 1 d
 Implement tests 5 d
 Management 4 d
 Iteration plan for next iteration 1 d
 Staff the project 3 d
 Meetings 15 d
 Iteration I complete 08/20/03
 I teration I I – Develop Pre-Release Version 2 104 d
 Refine Requirements (Use case Model) 3 d
 Refine and detail use cases 3 d
 Design Model 17 d
 Design sequence diagrams for selected use cases 4 d
 Design class diagrams for selected use cases 4 d
 Design database 3 d
 Design resource agent 3 d
 Design Grid applications integration 3 d
 Implementation 59 d
 Implement selected use cases 28 d
 Implement Grid applications 8 d
 Implement resource agent components 10 d
 Update database schema 3 d
 Create Web interface 5 d
 Fix defects 5 d
 Test (Unit and Functional Tests) 6 d
 Plan tests 1 d
 Implement tests 5 d
 Management 4 d
 Iteration plan for next iteration 1 d
 Staff the project 3 d
 Meetings 15 d
 Iteration II complete 09/17/03
 I teration I I I – Develop Pre-Release Version 3 103 d
 Refine Requirements (Use case model) 3 d
 Refine and detail use cases 3 d
 Design Model 17 d
 Design Sequence diagrams for selected use cases 4 d
 Design Class diagrams for selected use cases 4 d
 Design resource agent 3 d
 Design Database 3 d
 Design Grid Applications Integration 3 d
 Implementation 59 d
 Implement selected use cases 28 d
 Implement Grid Applications 8 d
 Implement Resource Agents Components 10 d
 Update database schema 3 d
 Create Web Interface 5 d
 Fix Defects 5 d

24

 Test (Unit and Functional Tests) 6 d
 Plan Test 1 d
 Implement Tests 5 d
 Management 3 d
 Staff the project 3 d
 Meetings 15 d
 Construction Phase complete 10/14/03

 Transition Phase - Develop Release Version 90 d
 Tests and bug Fix 40 d
 Test and Fix Performances issues 15 d
 Prepare Deployment 10 d
 Install and configure database 8 d
 Management 11 d
 Staff the project 11 d
 Meetings 6 d
 Transition Phase complete 10/29/03

 Maintenance Phase ?
 Develop an iteration plan ?
 Plan Tests ?
 Correct Defects ?
 Prepare Deployment ?
 Management ?
 Staff the project
 Meetings ?
 Maintenance Phase complete 10/30/04

Table 6: Development Plan.

The Development Plan presented in Table 6 will be revised prior to the start of each iteration
phase. Question marks denote the fact that the effort required to complete tasks in the
maintenance phase is difficult to estimate at this time.

7 Project Budget

8 Intellectual Property
The intellectual property expected to arise from this project comprises the software system
(source code) and the design documents. University of Waterloo researchers shall retain the
Intellectual Property generated during this project. It is usually the goal of University of
Waterloo researchers to disseminate the research results through publications in
conferences/journals and open source software.

25

9 Web Site Information
The project Web site URL is http://bbcr.uwaterloo.ca/~canarie/. The site is protected using
HTTP authentication. Credentials will be provided once content appears. A publicly
accessible Web site will also be made available.

26

10 Appendix: Resumes of Key Project Personnel

27

11 Appendix: Software Architecture

11.1 Introduction
This section provides detailed information on the architecture of the proposed software
system. We begin this section by defining relevant terms and explaining the design
philosophy. In particular, the notion of LP spawning is introduced and discussed in detail.
Then an overview of the overall architecture is presented. Next we explain in detail how each
component inside the architecture functions and we specify what protocols are used for inter-
component communications. Technologies chosen to implement each component are also
justified. Some scenarios of typical LP operations are described at the implementation level.

11.2 Terminologies and Definitions
This section provides definitions of terms that will be used throughout this document.

Terms Definitions
Management
Domain

The set of optical network resources under the control of a single
entity such as a regional network provider, an enterprise, a university,
a hospital, or a government department.

LightPath (LP) A unidirectional point (source) to point (destination) connection with
effective guaranteed bandwidth [1]. Examples of a LP include:

- Analog wavelength on a CWDM or DWDM system
- STS channel on a SONET or SDH circuit
- ATM CBR circuit
- DiffServ “gold” service on a packet based network
- Gigabit Ethernet over dedicated fiber strand

An end-to-end LP is the concatenation of multiple inter-domain LPs.

LightPath
Object (LPO)

An LPO is an abstract representation of a LP. An inter-domain or
Root LPO represents an inter-domain LP while an end-to-end or
Compound LPO represents an end-to-end LP. LPOs can be
concatenated to form Compound LPOs. An LPO may also be
partitioned into smaller (bandwidth-wise) Partitioned LPOs.

Customer A customer is a user of the proposed software system and accesses it
through a Web interface.

Domain
Administrator

A domain administrator of domain A is an entity that has authority to
control and manage the inter-domain LPs within domain A. It accesses
the software system through a Web interface.

Grid
Application

Grid application queries and accesses Grid resources through the
standard OGSA interface. One example is GridFTP for file transfers.

28

Grid Service A Grid service is one type of Web services that conforms to the OGSA

standard. That is, it allows Grid applications to discover and access it
using standard OGSA methods. We use both terms interchangeably
throughout this document.

System This refers to the proposed software system to be implemented.

Table 7: Terms and definitions table.

11.3 Key Concepts
In this section, we describe and explain the key concepts behind the design of the proposed
software system. We begin by defining the abstraction process of LPs as LPOs and discuss
the set of operations that can be applied on them. Then the ownership issue of an LPO is
described, followed by a detailed discussion of the key LP operations including LPO
spawning, LPO termination and end-to-end LPO establishment.

11.3.1 Abstraction of LPs

As defined earlier, an LPO is an abstract representation of an established LP in the network.
There are two types of LPs: an inter-domain LP and an end-to-end LP. In order to allow
operations on the LPs, inter-domain LPs are represented as Root LPOs and end-to-end LPs are
represented as C-LPOs (Compound LPOs). Several operations can be applied to LPOs. The
process of partitioning a subset of an LPO’s resources to form another LPO is referred to as
LPO spawning. The newly constructed LPO from the previous operation is called a P-LPO
(Partitioned LPO). The process of concatenating several LPOs together to form another LPO
is referred to as LPO composing. These two operations are illustrated in Figure 2.

Figure 2: Spawning and composing of LPOs.

Root-LPO

P-LPO P-LPO P-LPO

Root-LPO

P-LPO

C-LPO

Root-LPO

C-LPO

Spawning

Composing

P-LPO

P-LPO

P-LPO

P-LPO

29

11.3.2 LPO Ownership

Each LPO has an owner stack for keeping track of its current and past owners. The top of an
owner stack is the current owner or simply the LPO owner. An LPO will always have exactly
one (current) owner. Only the owner of an LPO may apply control operations to the LPO.
When an LPO is assigned to (or used by) a customer, the customer becomes the new owner of
the LPO and a new node representing this customer will be pushed onto the owner stack of
this LPO. For instance, at time T1 in Figure 3, LPO_1 is advertised by domain administrator
A. Its owner stack will contain a node labeled with ‘DA-A’ (Domain Administrator A). At
time T2, when user A forms a LP using LPO_1 and LPO_2, a new node with label ‘User-A’ is
pushed onto the owner stack of these two LPOs. The owner stack of LPO_3 simply contains a
node labeled with ‘User-A’ , as illustrated in the same diagram.

One of the benefits of storing an owner stack structure is for terminating an LP (i.e. LPO
termination). Refer back to Figure 3. Again, at time T3, some more LPOs have been created.
Suppose we would like to terminate LPO_7. Recall that this operation can only be triggered
by the LPO_7 owner, namely User-C. When a terminate LPO operation is issued on LPO_7,
its owner stack is popped, the associated resource is released, and this operation is implicitly
applied on all underlying LPOs that LPO_7 uses. The result after LPO_7 is terminated is
shown in the diagram at time T4.

It is important to note that if a single variable is used to store the LPO owner, the only way to
terminate LPO_1 to LPO_6 is via User-C. But if User-C is a Grid application instance and it
has since finished execution after terminating LPO_7, then there will be no way to terminate
LPO_1 to LPO_6. However with the owner stack, ownership is automatically transferred to
the previous owner after LPO termination occurred.

It should be noted that each LPO contains an LPO list structure to store the list of LPOs used
to form this LPO. This structure will be discussed in a later section. Referring back to Figure
3, at time T4, LPO_5’s LPO list structure contains LPO_1 and LPO_2. Therefore it is able to
determine which LPOs it is using and thus implicitly apply LPO operations on them.

30

Figure 3: The owner stack of each LPO.

11.3.3 LPO Spawning

One of the key operations of this software is the ability for LPO owners (current owners) to
partition and lease some portions of their LPOs to other users. The process of dividing a LP
into two or more partitions is referred to as LPO spawning. It is important to note that LPO
spawning is a recursive operation. That is, the owner of a LP X may grant access to a portion
of its LP (called Y) to user B, who in turn leases a portion of LP Y to another user. LPO
spawning may arise in two different situations. In the first case, the LP to be partitioned is an
inter-domain LP. In the second and more complicated case, the LP to be spawned is an end-
to-end LP which consists of two or more inter-domain LP concatenated together. Figure 4
illustrates the spawning of an inter-domain LP to three levels. Initially at time T1, 10Mbps of
bandwidth is reserved for LPO_1. Then the owner of LPO_1 decides to lease a portion of it to
another user, resulting in a new LPO, LPO_2, which has 5Mbps of reserved bandwidth. The

LPO_1 LPO_2 LPO_3 LPO_4

LPO_5 LPO_6

LPO_7

DA-A

User-A

User-C

DA-B

User-A

User-C

DA-C

User-B

User-C

DA-D

User-B

User-C

User-C

User-A

User-C

User-B

User-C

LPO_1 LPO_2

LPO_5

DA-A

User-A

DA-B

User-A

User-A

T3:

T2:

LPO_1 LPO_2

DA-A DA-B

T1:

LPO_1 LPO_2 LPO_3 LPO_4

LPO_5 LPO_6

DA-A

User-A

DA-B

User-A

DA-C

User-B

DA-D

User-B

User-A User-B

T4:

31

bandwidth for LPO_1 is reduced to 5Mbps as shown in T2. Later on, the owner of LPO_2
chooses to lease a portion of LPO_2 to other users. As a result, at T3, LPO_3 is created
having 2Mbps of bandwidth and the remaining bandwidth available in LPO_2 is reduced to
3Mbps.

Figure 4: Spawning of an inter -domain LPO to multiple par titions.

In the case where an LPO represents an end-to-end LP as a concatenation of inter-domain
LPOs, the spawning process involves partitioning the inter-domain LPOs first and then
merging the partitions together to form the newly spawned end-to-end LPO. Figure 5
illustrates such situation. Initially at time T1, two inter-domain LPOs exist and each has
10Mbps of reserved bandwidth. To setup an end-to-end LP, two new LPOs, LPO_3 and
LPO_4, are spawned from LPO_1 and LPO_2 respectively. The end-to-end LP LPO_5 is

LPO_1: 10Mbps

LPO_1: 5Mbps

LPO_2: 5Mbps

LPO_1: 5Mbps

LPO_2: 3Mbps

LPO_3: 2Mbps

T1:

T2:

T3:

LPO_1: 5Mbps

LPO_2: 5Mbps T4:

LPO_1: 10Mbps

T5:

T6:

32

formed by using these two new LPOs. Note that each LPO has an LPO list structure that
stores the list of LPOs used to form an end-to-end LP. In this example, LPO_5’s LPOList will
contain LPO_3 and LPO_4 at time T2. To spawn another LPO from LPO_5, each LPO inside
the LPOList is partitioned first to produce two new LPOs, LPO_6 and LPO_7. Then, these
new LPOs are concatenated to form a new LPO, LPO_8, as illustrated in Figure 5 at time T3.

Figure 5: Setting up of an end-to-end LPO and spawning of an end-to-end LPO.

Some boundary cases for the LPO spawning operation include spawning an LPO with zero
bandwidth and spawning an LPO whose bandwidth equals that of the parent LPO. Our system
does not allow the first case but permits the second case. The reason is that a LPO with zero
reserved bandwidth is of no practical use. But spawning an LPO with the same reserved
bandwidth as that of its parent LPO is equivalent to leasing the whole LP to another user. This
technique can be used to achieve LPO swapping functionality. A real life analogy to this

LPO_1:10Mbps LPO_2:10Mbps

T1:

T2:

LPO_1:2Mbps LPO_2:2Mbps

T3:

LPO_5:5Mbps

LPO_3:5Mbps LPO_4:5Mbps

LPO_1:2Mbps LPO_2:2Mbps

LPO_5:8Mbps

LPO_3:8Mbps LPO_4:8Mbps

LPO_8:3Mbps

LPO_6:3Mbps LPO_7:3Mbps

33

situation is when a landlord leases the whole house to a single tenant rather than leasing
individual rooms inside the house to different tenants.

An LPO spawning operation usually involves several intermediate steps and any one of these
steps may not complete successfully. This may result in a system with inconsistent state and it
is an issue that will be addressed in Section 11.6.

Not all LPOs can be used for spawning. If an LPO has zero reserved bandwidth or its
isSpawnable field (listed in Table 8) is set to false, then it cannot be used for spawning.
Attempts to spawn from such LPOs will result in an error returned back to the user.

11.3.4 End-to-end LPO establishment

An LPO that represents an end-to-end LP (i.e. an LP that crosses multiple domains) is called
an end-to-end LPO. It is established by concatenating multiple LPOs, each of which can be
either an inter-domain LPO or an end-to-end LPO.

Figure 6: End-to-end LPO establishment.

An example for end-to-end LPO setup by concatenating a set of end-to-end LPOs is illustrated
in Figure 6. In the diagram, two end-to-end LPs have already been created at time T1 and they

T1:

LPO_1:2Mbps

LPO_9:8Mbps

LPO_5:8Mbps

LPO_2:2Mbps

LPO_6:8Mbps

LPO_3:2Mbps

LPO_10:8Mbps

LPO_7:8Mbps

LPO_4:2Mbps

LPO_8:8Mbps

T2:

LPO_1:2Mbps

LPO_9:5Mbps

LPO_5:5Mbps

LPO_2:2Mbps

LPO_6:5Mbps

LPO_3:2Mbps

LPO_10:5Mbps

LPO_7:5Mbps

LPO_4:2Mbps

LPO_8:5Mbps

LPO_17:3Mbps

LPO_11:3Mbp
s

LPO_12:3Mbp
s

LPO_13:3Mbp
s

LPO_14:3Mbp
s

LPO_15:3Mbps LPO_16:3Mbps

34

are represented by LPO_9 and LPO_10 respectively. In the diagram, LPO_1, LPO_2, LPO_3
and LPO_4 denote inter-domain LPs among four different domains. Suppose a user wishes to
create an end-to-end LP across the four domains with reserved bandwidth of 3Mbps. The LP
is created as follows: four LPOs each with bandwidth of 3Mbps are spawned from LPO_5,
LPO_6, LPO_7 and LPO_8. Then LPO_15 and LPO_16 are spawned from the end-to-end
LPs denoted by LPO_9 and LPO_10. LPO_15 contains LPO_11 and LPO_12, while LPO_16
contains LPO_13 and LPO_14. Finally at time T2, LPO_17 is created and it contains LPO_15
and LPO_16. It is important to realize that the setup of end-to-end LP always starts at the
lowest level (inter-domain LPO level) and moves upwards.

11.3.5 LPO Termination

The LPO termination process entails the teardown of the LP corresponding to the LPO. Under
normal operating conditions, this operation can only be carried out by the current owner of the
LPO. There are some special situations where an LPO may be terminated by a past owner,
they will be addressed in Section 11.6.

Similar to LPO spawning, we will discuss LPO termination under two different circumstances:
inter-domain LPO termination and end-to-end LPO termination. In the first case, the LPO to
be terminated represents an inter-domain LP or a partition of an inter-domain LP. Consider
the situation depicted in Figure 4. Suppose the current owner of LPO_3 wishes to terminate
the associated LP. The resources occupied by LPO_3 will be freed and merged back to its
parent LPO, which is LPO_2. LPO_3 will also be removed as indicated in the diagram at time
T4. Similarly, to remove LPO_2, the reserved bandwidth of LPO_2 is first merged back to
LPO_1 as denoted in the diagram at time T5. At time T6, LPO_1 is terminated and since it is
the top level LP, no resource merging occurs.

The process of end-to-end LPO termination is a little more complicated. First, each LPO
inside the LPO list is terminated and its associated bandwidth is merged back to its parent
LPO. Referring back to Figure 5, to terminate LPO_8, LPO_6 and LPO_7 are terminated
first. Bandwidth previously occupied by LPO_6 and LPO_7 is then given back to the parent
LPOs, namely LPO_3 and LPO_4. Next, LPO_8 is removed. Terminating an LPO usually
involves several steps. Any one of the steps may fail for different reasons. There needs to be
a way to ensure that the system state is consistent even if one of the steps failed and this issue
is addressed in Section 11.6.

Not all LPOs can be terminated. An LPO can only be terminated if it has no child LPOs
associated with it (i.e. its childList field is equal to null). The system verifies this property and
attempts to terminate an LPO with a non-null childList will result in an error returned back to
the user. In addition, a status field value (see next section) of ‘available’ must be asserted prior
to LPO termination.

11.3.6 LPO Status

An LPO has a status field that indicates its availability. When an LPO’s status field is set to
be ‘available’ , that means a user can use its associated resource directly, or it can be
concatenated with other available LPOs to form an end-to-end LP. When an LPO is being
used, its status is set to be ‘ reserved’ , and no one can use it other than its owner. A third

35

possible LPO status value is ‘ inactive’ , which means that the LPO is unavailable and may or
may not be reserved by some entity. This status value is primarily used for fault recovery
mechanisms discussed in Section 11.6.

11.4 Data Structures
This section describes the data structures that will be used in the software system. One of the
key data structure design principles used is to decouple LPO attributes from the LPO class.
This allows classes, such as LPOtemplate, that deal with just the LPO attributes to implement
just the LPO attributes interface, rather than extending the LPO class. The LPO method
interface contains a set of function calls for LPO manipulation.

Data Structure interface LPOattribute
Descr iption This contains all of the basic LPO attributes.
Attr ibute String LPOid
 An ID that uniquely identifies this LPO. It is assigned by the LPO

space when this LPO is inserted into the space.
Attr ibute Int status
 The current status of the associated LP. It is an Int type that takes on

values from { 0=available, 1=reserved, 2=inactive}
• available: this LPO is available for use
• reserved: this LPO is being used by a customer.
• inactive: this LPO is unavailable for any use and can only be

queried
Attr ibute Int prevStatus
 Whenever the ‘status’ field is modified, the current ‘status’ value is

stored in this attribute. This allows the previous status to be restored
after a failure that temporarily causes the status to be set to ‘ inactive’ .

Attr ibute Stack ownerStack
 Stores the current and past owner(s) of this LPO. The top of this

stack is the current owner. This stack will never be empty (i.e. there
will be always an owner for a LPO).

Attr ibute String parentLPOid
 If this LPO is a partition of another LPO X, then this field will be

assigned with X’s LPOid field. Otherwise this field is set to null.
Attr ibute String sourceSWTID
 A unique ID (such as the IP address) that identifies the upstream

switch of the associated LP.
Attr ibute String destSWTID
 A unique ID (such as the IP address) that identifies the downstream

switch of the associated LP.
Attr ibute Boolean isSpawnable
 True if and only if the associated LP can be further spawned from.

One situation where this occurs is when the reservedBandwidth of the
LPO is zero. Another scenario is when an LP can no longer be

36

further subdivided into smaller bandwidth channels due to bandwidth
granularity constraints.

Attr ibute Long bandwidth
 The amount of bandwidth in Kbps reserved for the associated LP.
Attr ibute Date expireDate
 The time when this LPO will expire. When an LPO expires, its

terminateLP() method is invoked. This field is used to store the lease
time of an LP.

Attr ibute List childList
 A list of child LPOs that were spawned from this LPO.
Attr ibute List LPOlist
 If this is an end-to-end LPO, then this field contains a list of LPOs

used to form the associated LP. If this is an inter-domain LPO, then
this field is set to null.

Attr ibute String loopbackLPO
 The LPO ID of the loopback LP for the associated LP, if one exists.

Data Structure class LPOclass implements LPOattribute, net.jini.core.entry.Entry
Descr iption The LPOclass implements a set of attributes and methods for LPO

object manipulation purposes. The LPOclass implements the Entry
interface, which is required in order for LPOs to be inserted and used
with a JavaSpace.

Each instance of the LPOclass is an LPO object. Each LPO object
(or just LPO) is assigned a unique ID when inserted into the LPO
space.

Method LPOclass spawnLPO(long bw)
 Spawn and return a new LPO with reserved bandwidth equal to ‘bw’

from this LPO. If this LPO is an inter-domain LPO, then the source
and destination switches of this LPO are contacted to have a new LP
setup with bandwidth equals to ‘bw’ . If this is an end-to-end LPO,
then spawnLPO() is invoked on each LPO in LPOlist. Detailed
information on LPO spawning can be found in Section 11.3.3. If the
operation is unsuccessful, null is returned.

Method boolean terminateLP()
 Return false if this LPO is the parent of some existing LPO.

Otherwise release the reserved bandwidth back to the parent LPO and
then remove this LPO from the system. If this is an end-to-end LPO,
then invoke this method on each LPO in the LPOlist. If this LPO has
no parent, then set the status of this LPO to ‘available’ and insert it
back into the LPO Space. Return true if the operation is successful;
return false otherwise.

Method void pushOwnerStack(String ownerID)
 Push an owner Id onto the top of the owner stack.
Method String popOwnerStack()
 Pop and return the top owner Id of the owner stack.

37

Data Structure class LPOtemplate implements LPOattribute
Descr iption An LPO template is a placeholder for LPO attributes. It contains all

of the attributes of an LPO. It is useful for passing LPO attributes
into function calls as well as for containing information on how to get
access to an LPO (i.e. by a Grid application).

Data Structure class LPOSpace implements net.jini.space.JavaSpace
Descr iption This class represents a storage space for LPO and LPOref objects. It

is inherited from JavaSpace class, which enables persistent storage of
objects and provides a set of functions to add, remove and find
objects inside the space. This class has methods that automatically
remove expired objects from the space.

An LPO space may contain other LPO spaces. This is an important
property of this class because it enables a logically centralized but
physically distributed LPO space to be implemented.

Attr ibute String LPOSpaceId
 A string that uniquely identifies this LPO Space.
Attr ibute Date startTime
 Since when is this space running.
Attr ibute Date curTime
 The current time of the LPO space.
Attr ibute ExpireLPOThread expireLPOCleaner
 This is a background thread that periodically invokes the

removeExpireLPO method.
Attr ibute CheckLPOThread checkLPOworker
 This is a background thread that periodically checks this LPO space

to ensure that the source and destination switches of a pre-defined set
of LPOs are up.

Attr ibute String parentLPOSpaceId
 The identification of the parent LPO space of this LPO space. If this

LPO space has no parent, then this field is set to null.
Attr ibute Set LPOSpaceSet
 The set of LPO spaces contained by this LPO space. A call to read an

LPO from this space will also invoke the read method of the LPO
spaces in this set.

Method List removeExpiredLPO()
 Find and terminate all expired LPOs (by invoking the terminateLP()

method on them). This method is invoked by the expireLPOCleaner
periodically. Return the list of removed LPOs.

Method String addLPO(LPOclass lpo)
 Add the specified LPO ‘ lpo’ to this LPO space and generate and

return a unique string identifying the specified LPO.
Method boolean addLPOSpace(LPOSpace lpoSp)

38

 Add the specified LPO space to this LPO space. ‘ lpoSp’ must not
already have a parent LPO space. Return true if the operation is
successful; return false otherwise.

Data Structure class LPOThread implements Runnable
Descr iption Defines the superclass of a set of useful background thread objects

that periodically check the LPO space for various purposes.
Attr ibute long timePeriod
 How often this thread is executed, measured in seconds.

Data Structure class ExpireLPOThread extends LPOThread
Descr iption This is a thread for finding and removing expired LPOs by calling the

removeExpiredLPO() method every ‘ timePeriod’ seconds.

Data Structure class CheckLPOThread extends LPOThread
Descr iption This is a thread for ensuring that the source and destination switch of

a pre-defined set of LPOs in the LPO space are up. One way to use
this thread is to check all ‘available’ LPOs by providing the
appropriate set definition. The definition is passed into the
constructor of this thread as an LPO template. If an LPO is an end-
to-end LPO, then all LPOs in the ‘LPOlist’ will also be examined. If
a switch cannot be contacted, the corresponding LPO is set to
‘ inactive’ .
In addition to checking the pre-defined set of LPOs, this thread will
also automatically examine LPOs with status equal to ‘ inactive’ to
see if the associated switch is up or not. If it is up, then the LPO will
be assigned to its previous status.

Table 8: LPO attr ibutes, data structures, and methods.

11.5 Detailed System Architecture
The detailed system architecture for the proposed software system is depicted in Figure 7. The
system is divided into three main layers: the user access layer, the service provisioning layer
and the resource management layer. The user access layer is concerned with handling and
parsing requests from customers and domain administrators. The service provisioning layer is
about providing Grid services to users as well as applications. The resource management
layer deals with LPO maintenance and low-level communication with switches of the
underlying optical network. In subsequent sections, we will detail the purpose and
functionalities of each component at each layer.

The user access layer and service provisioning layer are logically centralized, whereas the
resource management layer is both physically and logically distributed.

39

Figure 7: Detailed system architecture.

11.5.1 User Access Layer: Web Server

The Web server receives and handles customer or domain administrator requests through a
Web interface. The Web interface allows domain administrators to add, remove, query and
modify LPOs. Any LPO advertised by the domain administrator must represent an established
inter-domain LP. The Web interface permits customers to create end-to-end LPs across

LPO Controller LPO Controller LPO Space

Service
Registry

Grid Application

Application Server

Service
Implementation

Web Server

Customer Domain
Administrator

User DB

Web Interface

Request
Handler SOAP/HTTP

HTTP HTTP

Grid Service Interface

JDBC

RMI

SOAP/HTTP

WSIL

SOAP/HTTP

Resource Agent

Resource
Management
Layer

Service
Provisioning
Layer

User Access
Layer

SOAP/HTTP

RMI

TL1

Request Controller

Switch Interface

LPO Controller
LPO Controller LPO Controller Programmable
Controller

40

multiple domains or partition an existing LP and re-advertise the partitions. When a user
request is received by the Web server, the request handler first ensures that the request is from
an authorized party and then parses this request. If the request is an LPO operation, then the
request handler will attempt to find an appropriate service for the requested operation by
querying the service registry. After a suitable service is located, the request handler accesses
the service by creating and exchanging SOAP/HTTP messages with the application server.

The Web server is connected to a database that contains the set of accounts of users who may
access the system. User accounts may be added, removed, and modified by the Web server
administrator (a different entity from a domain administrator). However, the Web server
administrator does not have access to the LPO services, and therefore it is not shown in Figure
7. We plan to use mySQL as the database server for user accounts since it is free for non-
commercial use and it is a widely used open-source database management system.

The Java Web Services Developer Pack (Java WSDP) provides a set of tools for building and
deploying XML applications, Web services, and Web applications [4]. Java WSDP is from
Sun and is available at no cost. One of the tools from the Java WSDP toolset is the Apache
Tomcat container, which is a suitable server solution for the Web server implementation of
this project. Tomcat is a commercial-quality server that is used for the official reference
implementation for Java Servlet and JavaServer Pages technologies. The request handler will
be implemented as a set of Java Servlets. A Grid service may not complete instantaneously
and a mechanism is needed for returning results to the user at a later time. Tomcat integrates
well with Apache HTTP server, which is the de facto Web server standard in the market today.
Another tool provided by Java WSDP is the Java API for XML Messaging (JAXM). It is a
package for building SOAP conforming messages, which is needed by the request handler for
sending and receiving SOAP messages.

11.5.2 Service Provisioning Layer: Service Registry

The service registry maintains a list of available Grid services. The request handler inside the
Web server and a Grid application may query this registry directly via SOAP/HTTP and
WSIL, respectively. Each Grid service is described in the standard WSDL format. The
service registry is essentially an XML registry and there are two complementary standard
specifications for it including the ebXML registry and repository standard and the UDDI
specification. For this project, we will use xbxmlrr for the service registry because it is a
stable and free reference implementation for ebXML [6].

11.5.3 Service Provisioning Layer: Application server

The application server implements all LPO-related services and uses an OGSA conforming
interface so that Grid applications can access it directly. The Grid service interface inherits
from portType interfaces, which are the standard interfaces for Grid applications. The
portType interfaces that the Grid service interface inherits from are listed in Table 9.

Por tType Name Descr iption
GridService Encapsulates the root behavior of the component model.
HandleResolver Mapping from a Grid service handle to a Grid service

reference.

41

NotificationSource Allows clients to subscribe to notification messages.
NotificationSubscription Defines the relationship between a single

NotificationSource and NotificationSink pair.
NotificationSink Defines a single operation for delivering a notification

message to the service instance that implements the
operation.

Factory Standard operation for creation of Grid service instances.
Registration Allows clients to register and unregister registry contents.

Table 9: Por tType inter faces (source [3]).

The application server contains the implementation of a set of Grid services. When the
application server starts, it publishes this set of services onto the service registry via
SOAP/HTTP. The list of services to be implemented inside the application server is described
in Table 10. Both the request handler of the Web server and the application server need to
construct and exchange SOAP messages for accessing and communicating with the registry
for various reasons. For implementation purpose, we can use the Java API for XML registries
(JAXR) for SOAP message composition. JAXR is another tool provided by the Java WSDP
and it can access registries that follow either UDDI or ebXML specification. For the actual
service implementation, Java is the programming language of choice. JBoss is chosen for use
as the application server. JBoss is written in 100% pure Java and it is a widely used and
popular application server solution. The application server communicates directly with
resource agents using RMI.

Service Name Input

Parameters
Return
Value

Descr iption

LPO
advertisement

An LPO template LPO ID Advertises the availability of an
LP by adding the corresponding
LPO to the LPO space. Return a
unique ID that identifies the
newly created LPO.

LPO
termination

LPO ID Boolean Finds the specified LPO in the
LPO space and invokes
terminateLP() on it. This
terminateLP() method is also
invoked on the loopback LPO of
the specified LPO, if one exists.
Return true if operation is
successful; return false otherwise.

LPO query An LPO template A list of
LPOs that
match the
specified
search
criteria

Retrieve and return a list of
LPO(s) that match the attributes
specified by the input LPO
template.

42

ETE LP
establishment

sourceSWTID,
destSWTID,
bandwidth,
isLoopback

LPO ID Setup and establish an end-to-end
LP. This is accomplished by
finding a set of useful LPOs from
the LPO space, creating a new
LPO to contain this set of LPOs
and adding this new LPO to the
LPO space. The ‘ isLoopback’
argument indicates whether or not
to create a loopback LP for this
LP. If yes then an LPO
representing a loopback LP is
created and stored in the
‘ loopbackLPO’ field of the new
LPO. The loopback LPO should
have reserved bandwidth equal to
‘bandwidth’ . If ‘ isLoopback’ is
set to true and a loopback LP
cannot be found, the whole ETE
LP setup operation is considered
unsuccessful. Note that a special
case for this service is to setup an
LP between two neighbouring
domains. In this case if an LPO
that meets the bandwidth
requirement exists, its ID will be
returned. Otherwise, a new LPO
ID will be returned.

LPO
reconfiguration

LPO ID, a LPO
template

Boolean

Modify the specified LPO’s
attributes. For example, increase
or reduce the reserved bandwidth
for the associated LP.

LPO spawning LPO ID, a LPO
template

An LPO ID Create a list of new LPOs each
using a partition of the specified
LPO’s resources. Add these new
LPOs to the LPO space, and
modify the specified LPO’s
resource attributes accordingly.
A special case of this operation is
to spawn a child LPO that has the
same bandwidth requirement as
the parent LPO. In this case, the
parent LPO’s bandwidth
reservation will be reduced to
zero and the child LPO will be
instantiated.
If the LPO indicated by ‘LPO ID’

43

contains a loopback LPO, then a
partition of the loopback LPO
will also be spawned in the same
manner as described in the
previous paragraph.

LPO
concatenation

A list of LPO ID LPO ID Given a set of LPOs that have the
same owner, concatenate them
together to form an end-to-end
LPO. Return the ID of the newly
created LPO.

LPO access LPO ID An LPO ref. This allows the caller to gain
access and directly use the
specified LPO. Return a handle
(in the form of LPOref) to the
caller so that it can use the LPO
directly. This service will mostly
be used by a Grid application to
directly use the LP associated by
a LPO.

Table 10: L ist of Gr id services to be implemented.

Figure 6 illustrates a simple scenario where there exists only one route from one domain to
another. In reality there could be multiple paths between the same pairs of non-neighboring
domains. The application server maintains the topology of the whole optical network by
keeping track of the inter-domain LPOs being advertised. An LPO is advertised by inserting
the LPO with status set to ‘available’ into one of the LPO spaces corresponding to the relevant
switch (note: this is explained further in Section 11.5.5). The application server receives LPO
advertisement notification messages from the resource agent and modifies its view of the
overall network topology accordingly. For instance, if the LPO advertisements listed in Table
11 are made, then the overall network topology view stored inside the application server is
depicted in Figure 8. The internal view of the overall network topology is used by services
such as end-to-end LP establishment. Using this structure, a route discovery mechanism
determines a feasible set of LPOs for constructing an end-to-end LPO. It is possible that no
such LPO set can be found, and in this case an error is returned back to the user.

Advertised by Advertisement Bandwidth Associated

LPO
Domain Administrator
of domain A

Domain A to Domain B OC-48 LPO_1

Domain Administrator
of domain B

Domain B to Domain C OC-48 LPO_2

Domain Administrator
of domain B

Domain B to Domain D OC-48 LPO_3

Domain Administrator
of domain C

Domain C to Domain A OC-48 LPO_4

44

Table 11: Example adver tisement messages from domain administrator .

Figure 8: Internal view of the overall network topology.

11.5.4 Resource Management Layer: Resource Agent

The resource agent manages and controls all the LPs originating from a switch. There is one-
to-one mapping between a resource agent and a switch. When a domain administrator
advertises the availability of an inter-domain LP, a resource agent instance is created for the
upstream switch (if one such resource agent does not already exist). Note that although the
resource agent is associated with the upstream switch, under some situations, it will also
contact the downstream switch. One such situation is for constructing an LP with loopback.
A resource agent maintains an LPO space, which contains LPOs representing LPs (and
possibly partitions of them) with the source switch being the switch associated with this
resource agent. A sample situation is illustrated in Figure 9, where a resource agent manages
switch X and maintains an LPO space containing LPOs corresponding to all the inter-domain
LPs that originate from X. Note that when an LPO is added to the switch, a notification
message that contains the LPO information is sent to the application server. The application
server will then update its internal view of the overall network according to the message
content.

Domain B

Domain A

Domain C

Domain D

LPO_1

LPO_2

LPO_3

LPO_4

45

Figure 9: A resource agent instance managing three inter -domain LPOs.

The resource agent is composed of four building blocks: request controller, LPO controller,
programmable controller, and switch interface. The request controller receives and handles
RMI calls from the service implementation of the application server. The LPO controller is
associated with a customer and it manages all the LPOs assigned to that customer. LPO-
related operations such as LPO spawning and LPO termination are done through the LPO
controller. For instance, to spawn an LPO, the request handler will create an LPO controller
instance for the customer (if one does not already exist for this customer) and grab the LPO
from the LPO space. Then this LPO controller instance will invoke the spawnLPO() method
on the LPO and this operation will configure the switch through the switch interface
component. Next, the LPO controller will insert both the newly spawned LPO and the parent
LPO to the LPO space.

Another building block of the resource agent is the programmable controller, which is also
instantiated on a per-customer basis. It provides an environment for customers to install and
execute scripts. When a single customer owns a partition of LPs between a set of neighboring
domains, then the set of LP partitions effectively forms a virtual networking environment for
that customer. With the programmable controller, the customer may operate customized
routing and/or signalling protocols in his/her virtual environment, for example to control
peering with other customers.

The fourth component of the resource agent is the switch interface. It provides a facility to
construct, send and receive commands to and from the involved switches. On the resource
agent side, the switch interface offers a hardware-independent API to the programmable
controller and the LPO controller. A middle layer encapsulates hardware compatibility logic
in the form of a set of hardware adapter modules. On the hardware side, the switch interface
contains a protocol layer supporting industry standard protocols such as TL1 or SNMP.
AdventNet’s Java TL1 API can be used here.

LPO_1

LPO_2

LPO_3

Resource Agent

LPO Space

LPO_2

LPO_1

LPO_3

Switch X

46

As mentioned earlier, the LPO class contains a set of operations for self-manipulation. In
order for the changes made to an LPO to be reflected on the physical hardware, commands
need to be issued to the associated switch. This is achieved by binding the LPO instance onto
the switch interface so that TL1 or SNMP commands can be sent through the switch interface.

11.5.5 Resource Management Layer: LPO Space

The LPO space is an entity that provides persistent object storage and object manipulation
functions. It is always associated with a resource agent and as a result it maintains the set of
available, reserved and inactive LPOs local to an upstream switch. It will be implemented
using the JavaSpaces API, which already provides a set of useful functions such as object
lookup based on a set of attribute values, as well as addition and removal of objects. An LPO
may optionally have a lifetime. A background thread will periodically check the LPO space
and terminate expired LPOs. Note that Jini’s lease management function can be used instead
and it will be an implementation choice. In order to modify or manipulate an LPO in the
space, it has to be logically taken out from the space. This operation hides the LPO from other
users and implicitly disallows multiple users to modify the same object simultaneously.

11.6 Fault Recovery
Fault recovery refers to recovering the system from unexpected or exceptional circumstances.
Many different types of errors may occur for various reasons such as hardware failure and
equipment misconfiguration. Some failures are recoverable and some are not. We can only
deal with errors that are recoverable, such as the ones that will be mentioned in the following
paragraph.

One exceptional condition that may often occur is that the system cannot contact some
network switches for a period of time. Under such circumstance, all the ‘available’ LPOs
linked to the unreachable switches should be temporarily made inactive from the LPO space
until the switches are reachable again. This is because if an LPO is not reachable by the
system, that means we cannot configure it or use it. Therefore such LPOs should be disabled
so that end-to-end LP setup process will not consider them. The solution to this situation is to
initiate a background thread on the system LPO space that periodically checks ‘available’
LPOs to ensure that their source and destination switches are accessible. When a switch is not
reachable, all LPOs related to this switch are temporarily set to an ‘ inactive’ state. Note again
that this checking is performed only on LPOs with status equal to ‘available’ . The reason is
that if a switch along an end-to-end LP is unreachable to the system, it does not mean that the
LP is unavailable to the user. But if a switch associated with an ‘available’ LPO is
unreachable, then the system can not configure it when someone needs to use it. Hence there
is no point in keeping this LPO available in the LPO space.

Similar to most mission-critical distributed applications, we need to ensure that the system is
in a consistent state after each operation. For example, when setting up an end-to-end LP, one
of the steps is to issue appropriate TL1 commands to the set of involved switches.
Acknowledgement messages are returned back from the switches to the system to indicate the
success or failure of the requested action. If the system receives failure messages from one of
the switches, the whole LP setup is considered as unsuccessful. In this case, any actions

47

issued to the other switches need to be roll back. In our system, any operation that requires
communication with remote entities is logged step by step. The log denotes at what time a
particular action is taken. For an end-to-end LP setup operation, one section of the log will
contain the set of TL1 commands issued, the target switches of the commands and the time at
which the commands were sent. The log also contains information on when an
acknowledgement message was received and from which switch. Thus, when one switch fails
to send back an acknowledgement message, this log will be examined to perform a rollback
operation.

11.7 Sample Scenarios

11.7.1 LP Advertisement by a Domain Administrator

The administrator of domain A wishes to advertise an available LP from domain A to domain
B. This operation is illustrated in Figure 10.

1. A domain administrator (a human operator) of domain A attempts to login to the system.

The system checks the entered user name and password pair by verifying it against the
user DB.

2. The domain administrator is now logged to the system. He/she enters the information for
the LP to be advertised and selects the LPO advertisement option on the Web page.

3. The request handler on the Web server receives this request; contacts the service registry
for this LP operation.

4. The service registry returns the location and the method for accessing the LPO
advertisement service.

5. The request handler contacts the application server through the Grid service interface and
passes the LP information to the application server. It should be understood that inside the
service implementation, the LPO service factory creates a service session to handle the
LPO advertisement request. These are not shown in the diagram because the request
handler will not issue keep-alive message to maintain the session for later use. Each time
a service is accessed by the request handler, a new service session is created. The next
scenario describes this stage in more detail.

6. The service implementation (i.e. the corresponding service session) passes the LPO
advertisement request to the appropriate resource agent.

7. The resource agent creates an LPO controller for this user (if one does not already exist)
and the controller creates a new LPO according to the specified attributes and inserts it to
the LPO space.

48

8. The result of the operation is propagated from the resource agent to the application server,
and then back to the user via the Web server.

Figure 10: LPO Adver tisement by a domain administrator .

11.7.2 Setup end-to-end LP for a Grid Application

GridFTP, a Grid application, needs to setup an end-to-end LP for data transfer. The steps
involved for setting up a LP for this application are shown in Figure 11.

1. GridFTP contacts the service registry to find the ETE LP establishment service.
2. The service registry returns a handle of the ETE LP establishment service via WSIL.

The handle contains information on where and how to access the service.

Service
Registry

LPO Space

Application Server

Service
Implementation

Web Server

Domain
Administrator

User
DB

Web Interface

Request
Handler

Grid Service Interface

LPO

(1)

(1)
(1)

(2)
(8)

(3)

(4)

(5) (8)

(6)

Resource
Agent

Resource
Management
Layer

Service
Provisioning
Layer

(7)

User Access
Layer

(8)

49

3. GridFTP contacts the application server to use the ETE LP establishment service via
SOAP/HTTP.

4. The LPO service factory creates a service session instance for providing ETE LP
establishment service for GridFTP.

5. A handle of this service session is returned to the caller.
6. GridFTP passes the required parameters including source switch ID, destination switch

ID and bandwidth requirement to the service session via SOAP/HTTP. GridFTP also
periodically sends keep-alive messages to ensure that the service session exists and can
be used as long as the GridFTP wants.

7. The service session contacts the route discovery mechanism to find an appropriate set
of LPOs that can be used to setup a LP with the requested attribute (such as desired
bandwidth). If one exists, go to the next step. Otherwise, return an error message to
the GridFTP and skip the rest of the steps.

8. The service session contacts the relevant resource agents via RMI calls and passes the
needed information (such as the ID of the LPO to use) for setting up a LP.

9. The resource agent grabs the requested LPO from the LPO space.
10. The resource agent configures its associated switch by issuing TL1 commands to it. It

also configures the downstream switch by contacting the resource agent associated
with that switch. In Figure 11, suppose that the GridFTP source resides in a host inside
domain A and the destination host (the receiver of GridFTP transfer) is inside domain
C. The switch configuration part includes several tasks that happens simultaneously as
follows:

a. A route is assumed to have been setup within domain A so that GridFTP can
direct its traffic to switch E.

b. An LP is setup and switch E is configured (by LPO service session) to forward
GridFTP traffic along a pre-established LP to switch F.

c. An intra domain path is setup within domain B so that traffic can be transmitted
from switch F to switch G.

d. An LP is setup and switch G is configured to forward GridFTP traffic along it.
e. An intra domain path is setup inside domain C so that traffic can be directed

from switch H to the destination host inside domain C.

50

Figure 11: Gr idFTP operation.

11.7.3 Setup end-to-end LP by a customer through the Web interface

The setup of an end-to-end LP by a customer is very similar to that by a Grid application,
which is described in Section 11.7.2. The main difference between the two is the addition of
the Web interface layer in the former case. The scenario is illustrated in Figure 12 and the
steps involved are as follows:

1. A customer (human user) enters his user name and password on the system login Web

page. The Web server receives the user name and password pair and verifies it against the
user DB.

2. The customer is authenticated and is now logged into the system. He/she chooses the end-
to-end LP setup option and enters the required information including the source and
destination of the LP, and how much reserved bandwidth is needed for the LP.

Service
Registry

Grid Application (e.g. GridFTP)

Application Server

LPO Service
Factory

Grid Service Interface

LPO Service
Session

(1)

(2)

(3)

(4)

(6)

(7)

Domain A Domain B Domain C

SW-E SW-F SW-G SW-H

(8)

Route Discovery
Mechanism

Service Provisioning
Layer

Resource
Management
Layer

Resource
Agent LPO

Space

(8)

(9) LPO
Space

Resource
Agent

(9)
Resource

Agent
Resource

Agent

(5)

Service Implementation

51

3. The request handler checks the service registry for the requested operation via
SOAP/HTTP.

4. The service registry returns a handle of the end-to-end LP establishment service via
SOAP/HTTP. The handle includes where the service is located and how to access it.

5. The request handler contacts the application to access the desired service via SOAP/HTTP.
6. As in the last example, the LPO service factory creates an end-to-end LP establishment

service session.
7. A handle of this service session is returned to the caller.
8. The service session decodes the SOAP message to extract the service parameters.
9. The service session attempts to find a feasible end-to-end path using the route discovery

mechanism. If unsuccessful, return an error back to the user and skip the rest of the steps.
10. A feasible path has been computed. The service session will contact the relevant resource

agents and pass on the message parameters.
11. The resource agent receives the path setup request, goes into the LPO space to grab the

appropriate LPO.
12. The resource agent configures its associated switch by issuing TL1 commands to them. It

also configures the downstream switch by contacting the resource agent associated with
that switch.

13. The operation result is propagated back to the application, then to the user in the form of a
Web page via the Web server.

52

Figure 12: End-to-end LP setup through Web inter face.

Application Server

Service
Registry

SW-E SW-F SW-G SW-H

Web Server

User DB

Web Interface

Request
Handler

Customer

(5)

(1) (2)

(1)

(1)

(3)

(4)

(8)

(11)

(10) (10)

(13)

Service
Provisioning
Layer

User Access
Layer

Resource
Agent

LPO
Space

Resource
Agent

LPO
Space

Domain A Domain B Domain C

Resource
Management
Layer

(11)

(12) (12) (12) (12)

Resource
Agent

Resource
Agent

(12) (12)

LPO Service
Factory

Grid Service Interface

LPO Service
Session (6)

(9)

Route Discovery
Mechanism

Service Implementation

(7)

(13)

53

11.8 References

[1] User Controlled LightPaths Definition Document Version 6.0, Nov. 22, 2002.
[2] R. Boutaba, W. Ng and A. Leon-Garcia. “Web-based Customer Management of

VPNs”. Journal of Network and Systems Management, Vol. 9, No. 1, 2001.

[3] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Grahma, C. Kesselman and P.
Vanderbilt. Grid Service Specification. Draft-ggf-ogsi-Gridservice-04, work-in-
progress, Oct. 2002.

[4] Java Web Services Developer Pack (Java DWSP),
http://java.sun.com/Webservices/downloads/Webservicespack.html

[5] XMLSpy, http://www.xmlspy.com
[6] S. V. Kartalopoulos. “Understaing SONET/SDH and ATM”. IEEE Press, pp.43.
[7] ebXML, http://www.ebxml.org/

54

12 Appendix: Draft XML Schema and WSDL Descriptors

12.1 Introduction
We provide sample WSDL descriptors for some of the services described in the previous
section including LPO advertisement, LPO spawning and ETE LP establishment. The service
descriptors are created using XMLSpy [5]. XMLSpy enables users to create and edit any
XML documents (such as WSDL documents, SOAP envelopes, and XML schemas) via a
human friendly interface and it also validates XML documents against W3C standard
conformance. The sample WSDL documents are generated by this tool and can be found in
subsequent subsections. Figure 13 shows a sample WSDL descriptor inside XMLSpy.

Figure 13: LPO advertisement service screen capture from XMLSpy.

55

12.2 Sample XML Schema
A sample XML schema that defines the types in our system.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 2 U (http://www.xmlspy.com) by basem (u waterloo) --
>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" attributeFormDefault="unqualified">
 <xs:element name="UofWaterloo">
 <xs:annotation>
 <xs:documentation> the root element is university of waterloo
</xs:documentation>
 </xs:annotation>
 <xs:complexType>
 <xs:sequence>
 <xs:element name="LPOTemplate" type="LPOTemplateType"/>
 <xs:element ref="User" maxOccurs="unbounded"/>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="LPOTemplateType">
 <xs:sequence>
 <xs:element name="LPOID" type="xs:string"/>
 <xs:element name="Status" type="xs:int"/>
 <xs:element name="prevStatus" type="xs:int"/>
 <xs:element name="ownerStack" type="OwnerStackType"/>
 <xs:element name="parentLPOid" type="xs:string"/>
 <xs:element name="sourceSWTID" type="xs:string"/>
 <xs:element name="destSWTID" type="xs:string"/>
 <xs:element name="isSpawnable" type="xs:boolean"/>
 <xs:element name="bandwidth" type="xs:long"/>
 <xs:element name="expireDate" type="xs:date"/>
 <xs:element name="childList" type="List"/>
 <xs:element name="LPOList" type="List"/>
 <xs:element name="LoopbackLPO" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="OwnerStackType">
 <xs:sequence>
 <xs:element name="LPO_ownerID" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
 <xs:complexType name="List"/>
 <xs:element name="User">
 <xs:complexType>
 <xs:complexContent>
 <xs:extension base="UserType">
 <xs:sequence>
 <xs:element name="Name" type="xs:string"/>
 <xs:element name="Authentication" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>
 </xs:element>
 <xs:complexType name="UserType">
 <xs:choice>
 <xs:element name="DomainAdmin" type="xs:string"/>
 <xs:element name="Client" type="xs:string"/>
 </xs:choice>
 </xs:complexType>

56

</xs:schema>

12.3 Sample DTD
The following is a sample DTD file.

<?xml version="1.0" encoding="UTF-8"?>
<!-- edited with XMLSPY v5 rel. 2 U (http://www.xmlspy.com) by basem (u
waterloo) -->
<!--DTD generated by XMLSPY v5 rel. 2 U (http://www.xmlspy.com)-->
<!-- the root element is university of waterloo -->
<!ELEMENT UofWaterloo (LPOTemplate, User+)>
<!ELEMENT User ((DomainAdmin | Client), (Name, Authentication))>
<!ELEMENT LPOTemplate (LPOID, Status, prevStatus, ownerStack, parentLPOid,
sourceSWTID, destSWTID, isSpawnable, bandwidth, expireDate, childList,
LPOList, LoopbackLPO)>
<!ELEMENT DomainAdmin (#PCDATA)>
<!ELEMENT Client (#PCDATA)>
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Authentication (#PCDATA)>
<!ELEMENT LPOID (#PCDATA)>
<!ELEMENT Status (#PCDATA)>
<!ELEMENT prevStatus (#PCDATA)>
<!ELEMENT ownerStack (LPO_ownerID)>
<!ELEMENT parentLPOid (#PCDATA)>
<!ELEMENT sourceSWTID (#PCDATA)>
<!ELEMENT destSWTID (#PCDATA)>
<!ELEMENT isSpawnable (#PCDATA)>
<!ELEMENT bandwidth (#PCDATA)>
<!ELEMENT expireDate (#PCDATA)>
<!ELEMENT childList EMPTY>
<!ELEMENT LPOList EMPTY>
<!ELEMENT LoopbackLPO (#PCDATA)>
<!ELEMENT LPO_ownerID (#PCDATA)>

12.4 Sample WSDL Documents

The first WSDL document describes the LPO advertisement service. The second one
describes the LPO spawning service. The third one describes the ETE LP establishment
service.

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:y="http://bbcr.uwaterloo.ca/LPOservices/"
targetNamespace="http://bbcr.uwaterloo.ca/LPOservices/">
 <types>
 <xs:schema/>
 </types>
 <message name="messageName"/>
 <message name="queryExpression">

57

 <part name="Expression" type="xs:string"/>
 </message>
 <message name="serviceData">
 <part name="Name" type="xs:string"/>
 </message>
 <message name="TerminationTimeA">
 <part name="DTimeA" type="xs:time"/>
 </message>
 <message name="CurrentTerminationTimeA">
 <part name="CTimeA" type="xs:time"/>
 </message>
 <message name="TerminationTimeB">
 <part name="DTimeB" type="xs:time"/>
 </message>
 <message name="CurrentTerminationTimeB">
 <part name="CTimeB" type="xs:time"/>
 </message>
 <message name="ServiceNotDestroyed"/>
 <message name="GridServiceHandle">
 <part name="Handle" type="xs:IDREF"/>
 </message>
 <message name="GridServiceLocator">
 <part name="Locator" type="xs:string"/>
 </message>
 <message name="InvalidHandle"/>
 <message name="NoReferenceAvailable"/>
 <message name="NoSuchService"/>
 <message name="NoSuchServiceStarted"/>
 <message name="ServiceHasTerminated"/>
 <message name="temprarilyUnavailable"/>
 <message name="SubscriptionExpression">
 <part name="ServiceLocator" type="xs:string"/>
 </message>
 <message name="SubscriptionInstanceLocator">
 <part name="ServiceInstanceLoc" type="xs:IDREF"/>
 </message>
 <message name="NewMessage"/>
 <message name="ServiceParameters">
 <part name="LPOTemplate" type="xs:IDREF"/>
 </message>
 <message name="NewServiceLocator">
 <part name="NewLocator" type="xs:IDREF"/>
 </message>
 <message name="RServiceLocator">
 <part name="SrvLocator" type="xs:IDREF"/>
 </message>
 <message name="UnregisterHandle">
 <part name="UnHandle" type="xs:string"/>
 </message>
 <message name="UnregistrationFailed"/>
 <message name="LPOAdvertisementRequest">
 <part name="LPOTemplate" type="xs:IDREF"/>
 </message>
 <message name="LPOAdvertisementResult">
 <part name="LPOAdvResult" type="xs:boolean"/>
 </message>
 <portType name="GridService">
 <operation name="FindServiceData">
 <input message="y:queryExpression"/>
 <output message="y:serviceData"/>
 </operation>
 <operation name="RequestTerminationAfter">
 <input message="y:TerminationTimeA"/>

58

 <output message="y:CurrentTerminationTimeA"/>
 </operation>
 <operation name="RequestTerminationAfter">
 <input message="y:TerminationTimeB"/>
 <output message="y:CurrentTerminationTimeB"/>
 </operation>
 <operation name="Destroy">
 <fault name="FaultName" message="y:ServiceNotDestroyed"/>
 </operation>
 <operation name="LPOAdvertisement">
 <input message="y:LPOAdvertisementRequest"/>
 <output message="y:LPOAdvertisementResult"/>
 </operation>
 </portType>
 <portType name="HandleResolver">
 <operation name="FindByHandle">
 <input message="y:GridServiceHandle"/>
 <output message="y:GridServiceLocator"/>
 <fault name="InvalidH" message="y:InvalidHandle"/>
 <fault name="noReference" message="y:NoReferenceAvailable"/>
 <fault name="noService" message="y:NoSuchService"/>
 <fault name="serviceNotStarted" message="y:NoSuchServiceStarted"/>
 <fault name="serviceTerminated" message="y:ServiceHasTerminated"/>
 <fault name="TempUnavailable" message="y:temprarilyUnavailable"/>
 </operation>
 </portType>
 <portType name="Notification">
 <operation name="Subscribe">
 <input message="y:SubscriptionExpression"/>
 <output message="y:SubscriptionInstanceLocator"/>
 </operation>
 </portType>
 <portType name="Factory">
 <operation name="CreateService">
 <output message="y:NewServiceLocator"/>
 </operation>
 </portType>
 <portType name="Registration">
 <operation name="RegisterService">
 <input message="y:RServiceLocator"/>
 </operation>
 <operation name="UnregisterService">
 <input message="y:UnregisterHandle"/>
 <fault name="UnFail" message="y:UnregistrationFailed"/>
 </operation>
 </portType>
 <binding name="GridService" type="y:GridService">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="Destroy">
 <fault name="FaultName"/>
 </operation>
 <operation name="RequestTerminationAfter">
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="RequestTerminationAfter">
 <input>
 <soap:body use="literal"/>

59

 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="FindServiceData">
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="LPOAdvertisement">
 <soap:operation soapAction="urn:#LPOAdvertisement"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 <soap:operation soapAction="urn:#LPOAdvertisement"/>
 </operation>
 </binding>
 <binding name="HandleResolver" type="y:HandleResolver">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="FindByHandle">
 <soap:operation soapAction="urn:#FindByHandle"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <soap:operation soapAction="urn:#FindByHandle"/>
 <output>
 <soap:body use="literal"/>
 </output>
 <fault name="InvalidH"/>
 <fault name="noReference"/>
 <fault name="noService"/>
 <fault name="serviceNotStarted"/>
 <fault name="serviceTerminated"/>
 <fault name="TempUnavailable"/>
 </operation>
 </binding>
 <binding name="Notification" type="y:Notification">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="Subscribe">
 <soap:operation soapAction="urn:#Subscribe"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <soap:operation soapAction="urn:#Subscribe"/>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <binding name="Factory" type="y:Factory">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="CreateService">
 <soap:operation soapAction="urn:#CreateService"/>

60

 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <binding name="Registration" type="y:Registration">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="RegisterService">
 <soap:operation soapAction="urn:#RegisterService"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <soap:operation soapAction="urn:#RegisterService"/>
 </operation>
 <operation name="UnregisterService">
 <soap:operation soapAction="urn:#UnregisterService"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <soap:operation soapAction="urn:#UnregisterService"/>
 <fault name="UnFail"/>
 </operation>
 </binding>
 <service name="LPOAdvertisement">
 <port name="AdvertisementPort" binding="y:GridService">
 <soap:address location="No Target Adress"/>
 </port>
 <port name="AdvertisementHandlePort" binding="y:HandleResolver">
 <soap:address location="No Target Adress"/>
 </port>
 <port name="AdvertisementNotificationPort" binding="y:Notification">
 <soap:address location="No Target Adress"/>
 </port>
 <port name="AdvertisementFactoryPort" binding="y:Factory">
 <soap:address location="No Target Adress"/>
 </port>
 <port name="AdvertisementRegistrationPort" binding="y:Registration">
 <soap:address location="No Target Adress"/>
 </port>
 </service>
</definitions>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:y="http://bbcr.uwaterloo.ca/LPOservices/"
targetNamespace="http://bbcr.uwaterloo.ca/LPOservices/">
 <types>
 <xs:schema/>
 </types>
 <message name="messageName"/>
 <message name="queryExpression">
 <part name="Expression" type="xs:string"/>
 </message>
 <message name="serviceData">
 <part name="Name" type="xs:string"/>
 </message>
 <message name="TerminationTimeA">

61

 <part name="DTimeA" type="xs:time"/>
 </message>
 <message name="CurrentTerminationTimeA">
 <part name="CTimeA" type="xs:time"/>
 </message>
 <message name="TerminationTimeB">
 <part name="DTimeB" type="xs:time"/>
 </message>
 <message name="CurrentTerminationTimeB">
 <part name="CTimeB" type="xs:time"/>
 </message>
 <message name="ServiceNotDestroyed"/>
 <message name="GridServiceHandle">
 <part name="Handle" type="xs:IDREF"/>
 </message>
 <message name="GridServiceLocator">
 <part name="Locator" type="xs:string"/>
 </message>
 <message name="InvalidHandle"/>
 <message name="NoReferenceAvailable"/>
 <message name="NoSuchService"/>
 <message name="NoSuchServiceStarted"/>
 <message name="ServiceHasTerminated"/>
 <message name="temprarilyUnavailable"/>
 <message name="SubscriptionExpression">
 <part name="ServiceLocator" type="xs:string"/>
 </message>
 <message name="SubscriptionInstanceLocator">
 <part name="ServiceInstanceLoc" type="xs:IDREF"/>
 </message>
 <message name="NewMessage"/>
 <message name="ServiceParameters"/>
 <message name="NewServiceLocator">
 <part name="NewLocator" type="xs:IDREF"/>
 </message>
 <message name="RServiceLocator">
 <part name="SrvLocator" type="xs:IDREF"/>
 </message>
 <message name="UnregisterHandle">
 <part name="UnHandle" type="xs:string"/>
 </message>
 <message name="UnregistrationFailed"/>
 <message name="LPOSpawningRequest">
 <part name="LPOTemplate" type="xs:IDREF"/>
 <part name="LPOID" type="xs:string"/>
 </message>
 <message name="LPOSpawningResult">
 <part name="LPOID" type="xs:string"/>
 </message>
 <portType name="GridService">
 <operation name="FindServiceData">
 <input message="y:queryExpression"/>
 <output message="y:serviceData"/>
 </operation>
 <operation name="RequestTerminationAfter">
 <input message="y:TerminationTimeA"/>
 <output message="y:CurrentTerminationTimeA"/>
 </operation>
 <operation name="RequestTerminationAfter">
 <input message="y:TerminationTimeB"/>
 <output message="y:CurrentTerminationTimeB"/>
 </operation>
 <operation name="Destroy">

62

 <fault name="FaultName" message="y:ServiceNotDestroyed"/>
 </operation>
 <operation name="LPOSpawning">
 <input message="y:LPOSpawningRequest"/>
 <output message="y:LPOSpawningResult"/>
 </operation>
 </portType>
 <portType name="HandleResolver">
 <operation name="FindByHandle">
 <input message="y:GridServiceHandle"/>
 <output message="y:GridServiceLocator"/>
 <fault name="InvalidH" message="y:InvalidHandle"/>
 <fault name="noReference" message="y:NoReferenceAvailable"/>
 <fault name="noService" message="y:NoSuchService"/>
 <fault name="serviceNotStarted" message="y:NoSuchServiceStarted"/>
 <fault name="serviceTerminated" message="y:ServiceHasTerminated"/>
 <fault name="TempUnavailable" message="y:temprarilyUnavailable"/>
 </operation>
 </portType>
 <portType name="Notification">
 <operation name="Subscribe">
 <input message="y:SubscriptionExpression"/>
 <output message="y:SubscriptionInstanceLocator"/>
 </operation>
 </portType>
 <portType name="Factory">
 <operation name="CreateService">
 <output message="y:NewServiceLocator"/>
 </operation>
 </portType>
 <portType name="Registration">
 <operation name="RegisterService">
 <input message="y:RServiceLocator"/>
 </operation>
 <operation name="UnregisterService">
 <input message="y:UnregisterHandle"/>
 <fault name="UnFail" message="y:UnregistrationFailed"/>
 </operation>
 </portType>
 <binding name="GridService" type="y:GridService">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="Destroy">
 <fault name="FaultName"/>
 </operation>
 <operation name="RequestTerminationAfter">
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="RequestTerminationAfter">
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="FindServiceData">
 <input>

63

 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="LPOSpawning">
 <soap:operation soapAction="urn:#LPOSpawning"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 <soap:operation soapAction="urn:#LPOSpawning"/>
 </operation>
 </binding>
 <binding name="HandleResolver" type="y:HandleResolver">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="FindByHandle">
 <soap:operation soapAction="urn:#FindByHandle"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <soap:operation soapAction="urn:#FindByHandle"/>
 <output>
 <soap:body use="literal"/>
 </output>
 <fault name="InvalidH"/>
 <fault name="noReference"/>
 <fault name="noService"/>
 <fault name="serviceNotStarted"/>
 <fault name="serviceTerminated"/>
 <fault name="TempUnavailable"/>
 </operation>
 </binding>
 <binding name="Notification" type="y:Notification">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="Subscribe">
 <soap:operation soapAction="urn:#Subscribe"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <soap:operation soapAction="urn:#Subscribe"/>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <binding name="Factory" type="y:Factory">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="CreateService">
 <soap:operation soapAction="urn:#CreateService"/>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <binding name="Registration" type="y:Registration">

64

 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="RegisterService">
 <soap:operation soapAction="urn:#RegisterService"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <soap:operation soapAction="urn:#RegisterService"/>
 </operation>
 <operation name="UnregisterService">
 <soap:operation soapAction="urn:#UnregisterService"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <soap:operation soapAction="urn:#UnregisterService"/>
 <fault name="UnFail"/>
 </operation>
 </binding>
 <service name="LPOspawning">
 <port name="SpawningPort" binding="y:GridService">
 <soap:address location="No Target Adress"/>
 </port>
 <port name="SpawningHandlePort" binding="y:HandleResolver">
 <soap:address location="No Target Adress"/>
 </port>
 <port name="SpawningtNotificationPort" binding="y:Notification">
 <soap:address location="No Target Adress"/>
 </port>
 <port name="SpawningFactoryPort" binding="y:Factory">
 <soap:address location="No Target Adress"/>
 </port>
 <port name="SpawningRegistrationPort" binding="y:Registration">
 <soap:address location="No Target Adress"/>
 </port>
 </service>
</definitions>

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/"
xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
xmlns:http="http://schemas.xmlsoap.org/wsdl/http/"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:soapenc="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
xmlns:y="http://bbcr.uwaterloo.ca/LPOservices/"
targetNamespace="http://bbcr.uwaterloo.ca/LPOservices/">
 <types>
 <xs:schema/>
 </types>
 <message name="messageName"/>
 <message name="queryExpression">
 <part name="Expression" type="xs:string"/>
 </message>
 <message name="serviceData">
 <part name="Name" type="xs:string"/>
 </message>
 <message name="TerminationTimeA">
 <part name="DTimeA" type="xs:time"/>
 </message>
 <message name="CurrentTerminationTimeA">
 <part name="CTimeA" type="xs:time"/>
 </message>
 <message name="TerminationTimeB">

65

 <part name="DTimeB" type="xs:time"/>
 </message>
 <message name="CurrentTerminationTimeB">
 <part name="CTimeB" type="xs:time"/>
 </message>
 <message name="ServiceNotDestroyed"/>
 <message name="GridServiceHandle">
 <part name="Handle" type="xs:IDREF"/>
 </message>
 <message name="GridServiceLocator">
 <part name="Locator" type="xs:string"/>
 </message>
 <message name="InvalidHandle"/>
 <message name="NoReferenceAvailable"/>
 <message name="NoSuchService"/>
 <message name="NoSuchServiceStarted"/>
 <message name="ServiceHasTerminated"/>
 <message name="temprarilyUnavailable"/>
 <message name="SubscriptionExpression">
 <part name="ServiceLocator" type="xs:string"/>
 </message>
 <message name="SubscriptionInstanceLocator">
 <part name="ServiceInstanceLoc" type="xs:IDREF"/>
 </message>
 <message name="NewMessage"/>
 <message name="ServiceParameters"/>
 <message name="NewServiceLocator">
 <part name="NewLocator" type="xs:IDREF"/>
 </message>
 <message name="RServiceLocator">
 <part name="SrvLocator" type="xs:IDREF"/>
 </message>
 <message name="UnregisterHandle">
 <part name="UnHandle" type="xs:string"/>
 </message>
 <message name="UnregistrationFailed"/>
 <message name="ETELpEstablishmentRequest">
 <part name="sourceSWTID" type="xs:string"/>
 <part name="destSWTID" type="xs:string"/>
 <part name="bandwidth" type="xs:long"/>
 <part name="isLoopback" type="xs:boolean"/>
 </message>
 <message name="ETELpEstablishmentResponse">
 <part name="LPOSpnResult" type="xs:string"/>
 </message>
 <portType name="GridService">
 <operation name="FindServiceData">
 <input message="y:queryExpression"/>
 <output message="y:serviceData"/>
 </operation>
 <operation name="RequestTerminationAfter">
 <input message="y:TerminationTimeA"/>
 <output message="y:CurrentTerminationTimeA"/>
 </operation>
 <operation name="RequestTerminationAfter">
 <input message="y:TerminationTimeB"/>
 <output message="y:CurrentTerminationTimeB"/>
 </operation>
 <operation name="Destroy">
 <fault name="FaultName" message="y:ServiceNotDestroyed"/>
 </operation>
 <operation name="ETELpEstablishment">
 <input message="y:ETELpEstablishmentRequest"/>

66

 <output message="y:ETELpEstablishmentResponse"/>
 </operation>
 </portType>
 <portType name="HandleResolver">
 <operation name="FindByHandle">
 <input message="y:GridServiceHandle"/>
 <output message="y:GridServiceLocator"/>
 <fault name="InvalidH" message="y:InvalidHandle"/>
 <fault name="noReference" message="y:NoReferenceAvailable"/>
 <fault name="noService" message="y:NoSuchService"/>
 <fault name="serviceNotStarted" message="y:NoSuchServiceStarted"/>
 <fault name="serviceTerminated" message="y:ServiceHasTerminated"/>
 <fault name="TempUnavailable" message="y:temprarilyUnavailable"/>
 </operation>
 </portType>
 <portType name="Notification">
 <operation name="Subscribe">
 <input message="y:SubscriptionExpression"/>
 <output message="y:SubscriptionInstanceLocator"/>
 </operation>
 </portType>
 <portType name="Factory">
 <operation name="CreateService">
 <output message="y:NewServiceLocator"/>
 </operation>
 </portType>
 <portType name="Registration">
 <operation name="RegisterService">
 <input message="y:RServiceLocator"/>
 </operation>
 <operation name="UnregisterService">
 <input message="y:UnregisterHandle"/>
 <fault name="UnFail" message="y:UnregistrationFailed"/>
 </operation>
 </portType>
 <binding name="GridService" type="y:GridService">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="Destroy">
 <fault name="FaultName"/>
 </operation>
 <operation name="RequestTerminationAfter">
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="RequestTerminationAfter">
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 <operation name="FindServiceData">
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>

67

 </output>
 </operation>
 <operation name="ETELpEstablishment">
 <soap:operation soapAction="urn:#LPOEstablishment"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 <soap:operation soapAction="urn:#LPOEstablishment"/>
 </operation>
 </binding>
 <binding name="HandleResolver" type="y:HandleResolver">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="FindByHandle">
 <soap:operation soapAction="urn:#FindByHandle"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <soap:operation soapAction="urn:#FindByHandle"/>
 <output>
 <soap:body use="literal"/>
 </output>
 <fault name="InvalidH"/>
 <fault name="noReference"/>
 <fault name="noService"/>
 <fault name="serviceNotStarted"/>
 <fault name="serviceTerminated"/>
 <fault name="TempUnavailable"/>
 </operation>
 </binding>
 <binding name="Notification" type="y:Notification">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="Subscribe">
 <soap:operation soapAction="urn:#Subscribe"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <soap:operation soapAction="urn:#Subscribe"/>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <binding name="Factory" type="y:Factory">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="CreateService">
 <soap:operation soapAction="urn:#CreateService"/>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>
 <binding name="Registration" type="y:Registration">
 <soap:binding style="document"
transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="RegisterService">
 <soap:operation soapAction="urn:#RegisterService"/>
 <input>

68

 <soap:body use="literal"/>
 </input>
 <soap:operation soapAction="urn:#RegisterService"/>
 </operation>
 <operation name="UnregisterService">
 <soap:operation soapAction="urn:#UnregisterService"/>
 <input>
 <soap:body use="literal"/>
 </input>
 <soap:operation soapAction="urn:#UnregisterService"/>
 <fault name="UnFail"/>
 </operation>
 </binding>
 <service name="LPOspawning">
 <port name="ETELpEstablishmentPort" binding="y:GridService">
 <soap:address location="No Target Adress"/>
 </port>
 <port name="ETELpEstablishmentHandlePort" binding="y:HandleResolver">
 <soap:address location="No Target Adress"/>
 </port>
 <port name="ETELpEstablishmentNotificationPort" binding="y:Notification">
 <soap:address location="No Target Adress"/>
 </port>
 <port name="ETELpEstablishmentFactoryPort" binding="y:Factory">
 <soap:address location="No Target Adress"/>
 </port>
 <port name="ETELpEstablishmentRegistrationPort" binding="y:Registration">
 <soap:address location="No Target Adress"/>
 </port>
 </service>
</definitions>

